SYLLABUS

JOINT MASTERS PROGRAMME IN PHYSICS (NANOSCIENCE AND NANOTECHNOLOGY)

Between

School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala

and

Department of Physics, Kannur University, Swami Ananthatheertha Campus, Payyanur, Kannur

PREFACE

We are happy to present the curricula and syllabi of the following Joint M.Sc. Physics (Nanoscience and Nanotechnology) Programme according to the OBE concept for favour of approval by the Faculty and Academic Council of the University. The Board of Studies has developed the curriculum as per the Outcome Based Education (OBE) system. OBE is an educational approach that bases each part of the educational system with respect to the goals set for the students. OBE aims to equip the students (learners) with knowledge, competency orientations required for achieving their goals when they depart the institution. Further OBE empowers students to choose what they would like to study and how they would like to study it. The teaching methodologies and the evaluation system are also modified in par with the outcome-based approach. The Programme Specific Outcomes (PSOs) and the Course Outcomes (COs) for joint M.Sc. are presented in the syllabus. The PSOs and the COs are well correlated in the syllabus of each course.

Dr. Sreekala M.S.

Convenor, Joint M.Sc. Programme in Physics/Chemistry (Nanoscience and Nanotechnology) Mahatma Gandhi University **Dr. Sudheesh S.** Convenor, Joint M.Sc. Programme in Physics/Chemistry (Nanoscience and Nanotechnology) Kannur University

EXPERT COMMITTEE

Mahatma Gandhi University	Kannur University		
Convenor	Convenor		
Dr. Sreekala M.S,	Dr. Sudheesh S.,		
Associate Professor, SCS	Professor & Head		
Joint Director,	School of Chemical Sciences		
School of Nanoscience and Nanotechnology			
Prof. (Dr.) Nandakumar Kalarikkal	Dr. Baiju K.V,		
School of Pure and Applied	Assistant Professor		
Physics	School of Chemical Sciences		
Prof. (Dr.) C. Sudarsana Kumar,	Dr. Nissamudeen K.M.,		
School of Pure and Applied	HoD, School of Pure and Applied		
Physics	Physics		
Prof. (Dr.) Suresh Mathew,	Dr. Deepak N.K,		
School of Chemical Sciences	Associate Professor,		
	School of Pure and Applied		
	Physics		
	Dr. Shima P Damodaran,		
	Assistant Professor,		
	School of Chemical Sciences		
Externa	l Experts		
Dr. Kuruvila Joseph,			
Professor, IIST, Thiruvananthapuram.			
Dr. Hareesh,			
Principal Scientist, NIIST, Thiruvananthapurar	n.		

Programme Outcomes (PO) of Joint M.Sc. Programme

PO 1: Critical Thinking and Analytical Reasoning Capability to analyse, evaluate and interpret evidence, arguments, claims, beliefs on the basis of empirical evidence; reflect relevant implications to the reality; formulate logical arguments; critically evaluate practices, policies and theories to develop knowledge and understanding; able to envisage the reflective thought to the implication on the society.

PO 2: Scientific Reasoning and Problem-Solving Ability to analyse, discuss, interpret and draw conclusions from quantitative/qualitative data and experimental evidences; and critically evaluate ideas, evidence and experiences from an unprejudiced and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve problems and contextualise into research and apply one's learning to real life situations.

PO 3: Multidisciplinary/Interdisciplinary/Transdisciplinary Approach Acquire interdisciplinary/multidisciplinary/transdisc*i*plinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative-multidisciplinary/interdisciplinary/transdisciplinary-approach for formulate constructive arguments and rational analysis for achieving common goals and objectives.

PO 4: Communication Skills Ability to reflect and express thoughts and ideas effectively in verbal and nonverbal way; Communicate with others using appropriate channel; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner and articulate in a specific context of communication.

PO 5: Leadership Skills Ability to work effectively and lead respectfully with diverse teams; setting direction, formulating a goal, building a team who can help achieve the goal, motivating and inspiring team members to engage with that goal, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 6: Social Consciousness and Responsibility Ability to contemplate of the impact of research findings on conventional practices, and a clear understanding of responsibility towards societal needs and reaching the targets for 12 attaining inclusive and sustainable development.

PO 7: Equity, Inclusiveness and Sustainability Appreciate equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity,

secularism and national integration to enable to act as dignified citizens; able to understand and appreciate diversity, managing diversity and use of an inclusive approach to the extent possible.

PO 8: Moral and Ethical Reasoning Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work and living as a dignified person in the society.

PO 9: Networking and Collaboration Acquire skills to be able to collaborate and network with scholars in an educational institution, professional organizations, research organizations and individuals in India and abroad.

PO 10: Lifelong Learning Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self- paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

PROGRAMME	: M. Sc. Physi	ics (Nanoscience a	and Nanotechnology)
DURATION	: 2 years		
Credits	: Core :71	Elective:12	Open course:4

Program Specific Outcomes (PSOs): Nanoscience and Nanotechnology being an interdisciplinary subject offers knowledge, understanding and output that is integrated and cross-disciplinary in nature. The programme specific outcome (PSO) envisaged in this post graduate programme would be;

		MGU &
PSO	PSOs	KU PO
No:		No.
	Train students in the field of physical sciences with specific	1,6
1	emphasis on Nanoscience and Nanotechnology to cater to the	
	present demands of miniaturization and energy economy.	
	Help empower students to acquire objective as well as analytical	1,2
2	skills to carry out scientific enquiries, which help unveil the	
	natural phenomena.	
	Foster innovative cross-disciplinary research by posing newer	3,8,4,8
3	questions transcending traditional scientific fields and enable	
	students to get interactive skills.	
	Facilitate the students to be able to familiarise and to work with	2,6
4	advanced experimental and computational techniques at various	
	scales.	
5	Exposure of students to research taking place worldwide at the	3,8,10
5	frontiers of physics especially at the nanometre scale.	
	Equip the students to understand the Nature at various scales	1, 6,7
6	spanning from quantum mechanical through continuum, which	
	covers the subatomic to cosmological space.	
7	Apply principles of theoretical and applied physics, to	1
,	comprehend the scientific phenomenon in nano domain.	
	Nurture the quality of rationality and inquisitiveness, so that the	2,4,5,9
8	students are capable of free and critical thinking to steer clear	
	judgemental and social biases.	
	Inspire the students to be committed to deliver good to the	3,7,8,9
9	society by judicious application of scientific skill sets they	
	acquire doing physics at the nanoscale.	

SEMESTER	COURSE CODE	NAME OF THE COURSE	CREDIT	TOTAL CREDIT
	CORE		-	-
	MGKUMPNSC01	Classical Mechanics	4	
	MGKUMPNSC02	Mathematical Physics I	3	
	MGKUMPNSC03	Basic Electronics	3	
I	MGKUMPNSC04	Atomic and Molecular Physics	3	
(M.G. University +	MGKUMPNSC05	Introduction to Nanomaterials	3	24
Kannur University)	MGKUMPNSC06	Practical I - General Physics	2	
	MGKUMPNSC07	Practical II - Electronics - Practical	2	
	ELECTIVE (Choo	se any one)		
	MGKUMPNSE01	Statistical Physics	4	
	MGKUMPNSE02	Nanocomposites	4	
	CORE		1	
	MGKUMPNSC08	Mathematical Physics II	4	
	MGKUMPNSC09	Quantum Mechanics I	4	
	MGKUMPNSC10	Condensed Matter Physics I	3	
П	MGKUMPNSC11	Nanomaterials and Characterization	3	
(Kannur	MGKUMPNSC12	Practical III - Electronics	2	24
University)	MGKUMPNSC13	Practical IV - Advanced Physics	2	
	ELECTIVE (Choo	se any one)		
	MGKUMPNSE03	Electromagnetic Theory	4	
	MGKUMPNSE04	Nanophotonics	4	
	MGKUMPNSC14	INDUSTRIAL INTERNSHIP	2	
	CORE			
	MGKUMPNSC15	Quantum Mechanics II	4	
	MGKUMPNSC16	Condensed Matter Physics II	4	
	MGKUMPNSC17	Applications of Nanomaterials	3	
	MGKUMPNSC18	Practical V - Synthesis of		
III		Nanomaterials	2	23
(M.G. University)	MGKUMPNSC19	Practical VI - Characterization of	2	-
	FI ECTIVE (Chao		Δ	
	MGKUMPNSE05	Nuclear and Particle Physics	4	
	MGKUMPNSE06	Nanomagnetic Materials	4	
		ODEN COUDSE	4	
		OPEN COURSE	4	
		Dissertation	12	16
IV	MGKUMPNISCOO		12	10
I V				
	MGKUMPNSC21	Comprehensive Course Viva	4	
		TOTAL PROGRAMME	CREDITS	87

SEMESTER I

Programme	Joint M.Sc.					
Course Name	Classical Mechanics					
Type of Course	Core					
Course Code	MGKUMPNSC01	MGKUMPNSC01				
Semester	First			Credit:	4	
Course	This course provides t	he studer	nt with ac	curate de	escription	n of motion of
Summary &	macroscopic objects b	ased on I	Newtonia	in, Lagrai	ngian an	d Hamiltonian
Justification	mechanics. This will	include t	he mech	anics aris	sing out	of the special
	theory of relativity.	Moreove	r, this co	ourse will	l enable	them to learn
	classical mechanics as	s a precu	rsor to n	ewer phy	vsical the	ories, such as
	quantum mechanics.					
Total Student						
Learning Time	Learning Approach	ture	orial	tical	lers	Total
(SLT)		Lec	Tuto	Prac	Oth	Learning
						Hours
	Authentic learning					
	Collaborative	60	40	-	40	140
	learning					
	Independent learning					
Pre-requisite	Introductory mathematical knowledge of algebra, trigonometry, vector					
	and tensor analysis, calculus; basic knowledge of Newtonian					
	mechanics.					
Others- Library, fie	eld work, seminar and a	issignmer	ıt prepar	ations, te	est, journ	al, discussion
etc.						

	Expected Course Outcome		
CO		Learning	PSO No.
No.	Upon completion of this course, students will be able to;	Domains	
1	Get exposure to the Newtonian mechanics and variational formulation	U, R	4,6,7
2	Comprehend and learn more abstract Lagrangian and Hamiltonian mechanics	Е	2, 6, 7
3	Identify generalized coordinates and coordinate transformations of a rigid body. Comprehend various aspects of rigid body dynamics.	An	2,6
4	Be able to solve some real-world problems using canonical transformations	A/An	2,6
5	Identify coordinates and spaces which will hold the invariance of light velocity.	U/An	5, 8, 7
6	Equip with the techniques of reconciling with speeds of	A/E	5, 8, 7
	objects comparable to the light velocity.		
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill			
(S), Int	erest (I) and Appreciation (Ap)		

Module		CO No.
No.		
1	Module 1	1,2
	Newtonian, Lagrangian and Hamiltonian mechanics	
	Mechanics of a system of particles in vector form, Conservation of linear	
	momentum, energy and angular momentum, Degrees of freedom,	
	generalised coordinates and velocities, Lagrangian, action principle,	
	external action, Euler-Lagrange equations, Constraints, Applications of the	
	Lagrangian formalism, Generalised momenta, Hamiltonian, Hamilton's	
	equations of motion, Legendre transform, relation to Lagrangian	
	formalism, Phase space, Phase trajectories, Applications to systems with	
	one and two degrees of freedom, Central force problem, Kepler problem,	
	bound and scattering motions, Scattering in a central potential, Rutherford	
	formula, scattering cross section	
2	Module 2	3
	Non-inertial frames of reference and pseudoforces	
	Elements of rigid-body dynamics, Orthogonal transformations, Euler	
	angles, Rigid body equations of motion, The symmetric top, Small	
	oscillations, Normal mode analysis, Normal modes of a harmonic chain,	
	centrifugal and Coriolis forces.	
3	Module 3	4
	Elementary ideas on general dynamical systems	
	Conservative versus dissipative systems, Hamiltonian systems and	
	Liouville's theorem, Canonical transformations, Poisson brackets, Action-	
	angle variables, non-integrable systems and elements of chaotic motion	
4	Module 4	5,6
	Special relativity	
	Internal frames, Principle and postulate of relativity, Lorentz	
	transformations, Length contraction, time dilation and the Doppler effect,	
	Velocity addition formula, Four- vector notation, Energy-momentum four-	
	vector for a particle, Relativistic invariance of physical laws	

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:			
Approach	Active co-operative learning, Seminar, Group Assignments, Authentic			
	learning, Library work and Group discussion, Presentation by individual			
	student/ Group representative			
Assessment	Mode of Assessment			
Types	1. Continuous Internal Assessment (CIA)			
	Internal Test -20 marks			
	Assignment – Every student needs to write an assignment on a			
	given topic based on the available published literature – 10 marks			
	Seminar Presentation – A topic needs to be presented and			
	discussed with the class- 10 marks			
	2. Semester End Examination – 60 marks			

- 1. H. Goldstein, Classical Mechanics, 2nd Edition, Narosa Pub. House, 1989
- 2. I. Percival and D. Richards, Introduction to Dynamics, Cambridge University Press, 1987 [Chapters 4,5,6, 7 in particular and parts of Chapter 1-3,9, 10]
- 3. D. Rindler, Special Theory of Relativity, Oxford University Press, 1982
- 4. Stephen T. Thornton, Jerry B. Marion, Classical Dynamics of particles and system, 5th edition, Cengage; 2012
- Douglas Gregory, Classical Mechanics; an undergraduate text, Cambridge University Press, 2006
- 6. Rana and Joag, Classical Mechanics, McGraw Hill Education, 2017
- 7. Landau and Lifshitz, Mechanics. Vol. 1 (3rd ed.). Butterworth-Heinemann, 1976.
- Grant R. Fowles, George L. Cassiday, Analytical Mechanics, Thomson Brooks/ Cole, 2005
- 9. John R. Taylor, Classical Mechanics, University Science Books, California, 2005

Programme	Joint M.Sc.					
Course Name	Mathematical Physics	Mathematical Physics I				
Type of Course	Core					
Course Code	MGKUMPNSC02					
Semester	First	First Credit: 4				
Course Summary	This course allows the	students	to assimi	late math	ematical	foundations of
& Justification	physics. A considerable body of background knowledge of mathematical techniques is essential for understanding and learning the theory behind every physical phenomenon. This course would equip the students with standard techniques of solving physical problems as well.					
Total Student						
Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	60	40	-	40	140
Pre-requisite	Introductory mathematical knowledge of algebra, trigonometry, calculus; basic knowledge of problem solving.					
Others- Library, field work, seminar and assignment preparations, test, journal, discussion etc.						

СО	Expected Course Outcome	Learning	PSO No.	
No.	Upon completion of this course, students will be able to;	Domains		
1	Categorize physical properties according to the medium of their occurrence	U, R	2, 3	
2	Comprehend the linear algebra underlying many of the numerical simulation algorithms	Е	1, 8	
3	Customize differential equations to depict various real-world problems	А	1, 8	
4	Identify the applicability of special functions and polynomials	A/An	6, 2	
5	Develop skills for describing uncertainty in terms of probabilistic models and for probabilistic reasoning	E,S	9, 4	
*Remen	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),			

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module No.		CO No.
1	Vector and Tensor analysis: Vectors and Tensors, Vector calculus and tensors in index notation	1
2	Linear Algebra:	2
	Linear vector spaces, Dirac notation, Basis sets, Inner Products, Orthonormality and completeness, Gram-Schmidt orthonormalization process, Linear operators, Matrix algebra, Determinants, similarity transforms, diagonalization, orthogonal, Hermitian and unitary matrices, Spaces of square summable sequences and square integrable functions, generalized functions, Dirac delta function and its representations, Differential operators, Fourier series.	
3	Ordinary Differential Equations:	3
	Ordinary Differential Equations, Superposition principle, Power series solutions for second-order ordinary differential equations, singular points of ODEs, Sturm-Liouville problems, Hermite, Legendre, Laugerre and Bessel functions, Recurrence relations and generating functions, Spherical harmonics, Addition theorem, Gamma, beta and error functions.	
4	Probabilistic Systems Analysis	4,5
	Probability theory and Random variables Probability distributions and probability densities, Standard discrete and continuous probability distributions, Moments and generating functions, Central Limit Theorem (Statement and applications).	

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:		
Approach	Active co-operative learning, Seminar, Group Assignments, Authentic		
	learning, Library work and Group discussion, Presentation by individual		
	student/ Group representative		
Assessment	Mode of Assessment		
Types	1. Continuous Internal Assessment (CIA)		
	Internal Test		
	Assignment – Every student needs to write an assignment on a given		
	topic based on the available published literature		
	2. Seminar Presentation – A topic needs to be presented and discussed with the		
	class		
	3. Semester End Examination		

- Schaum's outline series, Mcgraw Hill, 1964: (i) Vector and tensor analysis (ii) Linear Algebra (iii) Differential Equations, (iv) Probability, (v) Statistics
- M. Boas, Mathematical Methods in Physics Sciences, 2nd Edition, Wiley International Edition, 1983
- 3. E. Kreyszig, Advanced Engineering Mathematics, Wiley Eastern, 5th Edition, 1991
- 4. E. Kreyszig, Introductory Functional Analysis and Applications, John Wiley, 1978
- 5. P. R. Halmos, Finite Dimensional Vector Spaces, Prentice-Hall India, 1988
- 6. George B. Arfken, Hans J. Weber, Frank E. Harris, Mathematical Methods for Physicists, 7th Edition, Academic Press, 2012.
- Gilbert Strang, Introduction to Linear Algebra, 5 th Edition, Wellesley-Cambridge Press, 2016

School Name	Joint M.Sc.						
Programme	M.Sc. Nanoscience a	M.Sc. Nanoscience and Nanotechnology (Physics)					
Course Name	Basic Electronics						
Type of Course	Core						
Course Code	MGKUMPNSC03						
Course Summary & Justification	This course aims to impart the basic knowledge of logic circuits and enable students to apply it to design a digital system. Students are expected to develop the skill to design circuits using operational amplifiers and other linear ICs for various applications. It also enables the learners capable of understanding the fundamental architecture of micro controllers. This course also enables the students to understand the basic concepts of analog and digital communication.						
Semester	1		Credi	it	3		
Total Student Learning Time (SLT)	Learning Approach	Lecture	Total Learning Hours Hours				
	Authentic learning Collaborative learning Case based learning	40	40	-	40	120	
Pre-requisite	Solid state devices, Se	emiconc	lucting na	anostructu	ures, VLS	SI	
Others- Library, s	eminar and assignment	prepara	tions, tes	t, journal	, discussi	on etc.	

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Explain the working of different combinational and sequential logic circuits. Students will be able to design the combinational and sequential circuits.	U, A	1,4
2	Understand the primary applications of the operational amplifier as an adder, subtractor, differentiator, integrator, comparator, and waveform generator etc.	U	1,4
3	Explain the working principle and instrumentation of analog and digital communications.	U	4, 7, 9
4	Explain the architecture of 8051 microcontroller, instructions, and it's working.	U	4, 5
*Remen Interest	nber (R), Understand (U), Apply (A), Analyse (An), Evaluate (I (I) and Appreciation (Ap)	E), Create (C)), Skill (S),

Module No.		CO No.
1	Logic gates and Combinational systems Boolean postulates and laws – Logic Functions and Gates De- Morgan's Theorems, Principle of Duality, Minimization of Boolean expressions, Sum of Products (SOP), Product of Sums (POS), Karnaugh map Minimization. Combinatorial Logic Systems - Comparators, Multiplexers, Demultiplexers, Encoder, Decoder. Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder.	1
2	Sequential systems Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Conversion of Flipflops, Excitation table and characteristic equation. Ripple and Synchronous counters, Shift registers-SIPO, SISO, PISO, PIPO. Shift Registers with parallel Load/Shift, Ring counter and Johnson's counter. Asynchronous and Synchronous counter design, Mod N counter	2
3	8051 microcontrollers 8051 Architecture- Register Organization- Memory and I/O addressing- Interrupts and Stack- 8051 Addressing Modes- Instruction Set- data transfer instructions, arithmetic instructions, logical instructions, Boolean instructions, control transfer instructions, Simple programs	3
4	Analog modulation and digital modulation Amplitude Modulation – Double and Single sideband techniques – Frequency modulation and Demodulation techniques – Bandwidth requirements – Pulse communication – Pulse width, Pulse position and Pulse amplitude modulation, Digital modulation- Pulse Code Modulation (PCM): Pulse Modulation, Sampling process, Performance comparison of various sampling techniques, Aliasing, Reconstruction, PAM, Quantization, Noise in PCM system, Modifications of PCM: Delta modulation, DPCM, ADPCM, ADM	4
5	Operational amplifiers Operational amplifiers (Op Amps): The 741 Op Amp, Block diagram, Ideal op-amp parameters, typical parameter values for 741, Equivalent circuit, Open loop configurations, Voltage transfer curve, Frequency response curve. Op-amp with negative feedback: General concept of Voltage Series, Voltage Shunt, current series and current shunt negative feedback, Virtual ground Concept; Op-amp applications: Summer, Voltage Follower- Differential and Instrumentation Amplifiers, Voltage to current and Current to voltage converters, Integrator, Differentiator, Precision rectifiers, Comparators, Schmitt Triggers, Log and antilog amplifiers. Op-amp Oscillators and Multivibrators: Phase Shift and Wien-bridge Oscillators, Triangular and Sawtooth waveform generators, A stable and monostable multivibrators	4

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar,
Approach	group activities.
Assessment	Mode of Assessment
Types	1 Continuous Internal Assessment (CIA)
	2. Seminar Presentation $-a$ theme is to be discussed and identified to
	prepare a paper and present in the seminar
	3. Assignments
	A. Semester End examination

- 1. Mano M.M., Ciletti M.D., "Digital Design", Pearson India, 4th Edition. 2006
- 2. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
- 3. Roddy and Coolen, Electronic Communications, Prentice Hall 4th Ed (1995).
- B. P. Lathi, Modern Digital and Analog Communication Systems 3rd Ed, Oxford University press (1998).
- Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010 6.Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010
- 6. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, Pearson Education.
- A. NagoorKani, Microprocessors and Microcontrollers, Second Edition, Tata McGraw Hill,
- 8. Thomas L. Floyd, Digital Fundamentals, Pearson Education; Eleventh edition, 2015
- Kenneth J. Ayala, The 8051 Microcontroller, , Thomson Delmar Learning, 2005

Programme	Joint M.Sc.						
Course Name	Atomic and Molecula	ar Physic	es				
Type of Course	Core						
Course Code	MGKUMPNSC04						
Course	This course provides an introduction to the field of atomic and						
Summary &	molecular physics. Th	nis will in	nclude a	descripti	on of cla	ssic historical	
Justification	experiments and res	sults and	l theoret	tical cor	cepts fi	rom quantum	
	mechanics. The first	half of th	nis cours	e deals p	rincipall	y with atomic	
	structure and the int	teraction	between	atoms	and fiel	lds. It covers	
	electronic transitions,	atomic	spectra,	excited s	states, hy	ydrogenic and	
	multi-electron atoms.	The sec	cond half	f of the	course d	leals with the	
	binding of atoms into molecules, molecular degrees of freedom						
	(electronic, vibration	al, and	rotation	al), elen	nentary	group theory	
	considerations and molecular spectroscopy.						
Semester	Ι		Credit		3		
Total Student							
Learning Time	Learning Approach	Ire	ial	cal	rs	Total	
(SLT)		ectu	utor	racti	Othe	Learning	
			L	P	Ū	Hours	
	Authentic learning						
	Collaborative	40	40		40	120	
	learning	40	40	-	40	120	
	Case based learning						
Pre-requisite	Basics of Atomic stud	cture and	Quantuji	m mecha	nics (Un	dergraduate)	
Others- Library, seminar and assignment preparations, test, journal, discussion etc.							

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
	Upon completion of this course, students will be able to;		
1	The module encompasses a detailed exposure to	U, A	2, 3, 6
	Hydrogen atom and time independent perturbation		

	theory Also discuss the relativistic corrections for the						
	anargy layels of the hydrogen stom and their effect or						
	energy levels of the hydrogen atom and their effect on						
	optical spectra and derivation of the energy shifts due to						
	these corrections using first order perturbation theory.						
	(Module 1)						
	This module discusses different interactions associated						
2	with Hydrogen atom and review of time dependent	U, A	2, 3, 6				
	perturbation theory. (Module 2)						
	The student will get knowledge about Quantization of						
3	the electromagnetic field and Raman effect. (Module	An, E	2, 3, 5				
	3).						
	The student will get theoretical understandings of						
	Hartree Fock SCF method, proof of Koopmans theorem,						
1	Slater's approximation to exchange, Total Hamiltonian	F	2, 3, 5				
- +	of a molecule, Born -Oppenheimer approximation,						
	Rotational and Vibrational Spectra of molecules etc.						
	(Module 4)						
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill							
(S) Interest (I) and Appreciation (An)							
(5), 111		(S), Interest (I) and Appreciation (Ap)					

Module		СО
No.		No.
1	Hydrogen atom: Review of the Bohr atom model, solution of the Schrodinger equation, spectra of hydrogen and hydrogen-like atoms, Review of time-independent perturbation theory, Fine structure of the hydrogen atom: spin-orbit coupling	1
	and relativistic correction to the kinetic energy, Review of the Dirac equation, Dirac equation in the non-relativistic limit	
2	Time Dependent Perturbation Theory Zeeman and Stark Spectroscopy Hyperfine interaction in atomic Hydrogen, Spectroscopy with the 21 cm emission line, Review of time-dependent perturbation theory, Interaction of electromagnetic radiation with a two-level atom, Rabi flopping, The dipole approximation, electric dipole, magnetic dipole and electric quadrupole transitions, Selection rules, Transition probabilities and intensity of spectral lines	2

3	Electromagnetic Field and Raman Effect	3				
	Line broadening mechanisms, Spontaneous and stimulated emissions and					
	Einstein coefficients, masers and lasers, Lamb shift, Quantization of the					
	electromagnetic field, The Raman effect, Introduction to NMR and ESR,					
	Review of Pauli's exclusion principle, The spin-statistics theorem, The Helium					
	spectrum, Many electron systems: Electron configurations and spectroscopic					
	notation, equivalent and non-equivalent electrons and Hund's rules					
4	Approximation Methods	4				
	Hartree Fock SCF method, proof of Koopmans theorem, Slater's					
	approximation to exchange, Total Hamiltonian of a molecule, Born -					
	Oppenheimer approximation, Rotational and Vibrational Spectra of molecules,					
	Anharmonicity, Franck-Condon principle, Electronic, Infrared and Raman					
	Spectra analysis, Symmetry of atomic and molecular systems, Group					
	theoretical treatment, proof of the Great Orthogonality Theorem.					
	Optional Advanced Topics: Saturation absorption spectroscopy, atomic clocks,					
	Laser-cooling and Bose-Einstein Condensation, Synchrotron radiation					
	spectroscopy, Photofragmentation of molecules.					

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar, group
Approach	activities.
Assessment Types	 Mode of Assessment Continuous Internal Assessment (CIA) 1. <i>Internal Test</i> -20 marks 2- <i>Assignment</i> – Every student needs to write an assignment on a given topic based on the available published literature – 10 marks 3. <i>Seminar Presentation</i> – A topic needs to be presented and discussed with the class- 10 marks A. Semester End Examination – 60 marks

- B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules Longman Inc. New York, 1983
- 2. E. U. Condon and G. H. Shortley, The Theory of Atomic spectra, Cambridge University Press, 1989
- G. Herzberb, Molecular Spectra and Molecular Structure -I Spectra of Diatomic Molecules, D. Von Nostrand Inc., 1956
- 4. G. Herzberg, Molecular Spectra and Molecular Structure -II Infrared and Raman Spectra of Polyatomic Molecules, D. Von Nostrand Inc., 1956
- 5. G. Herzberg, Atomic Structure and Atomic Spectra, Dover Pub. Go. 2nd Edition, 1944
- 6. H. E. White, Introduction to Atomic Spectra, McGraw-Hill, 1954
- 7. P. S. Sindhu, Molecular Spectroscopy, Tata McGraw-Hill, 1985
- 8. E. U. Condon and H. Odabasi, Atomic Structure, Cambridge University Press, 1980
- H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two- Electron Atoms, Plenum Press, 1977
- 10. M. Tinkham, Group Theory and Quantum Mechanics, Courier Dover Publications, 2004
- D. J. Griffiths, Introduction to Quantum Mechanics (2nd Edition), Pearson Education 2005
- 12. Peter F. Bernath, Spectra of Atoms and Molecules, Oxford University Press, 1995
- 13. J. J. Sakurai, Modern Quantum Mechanics, Pearson Education, 2009
- 14. J. J. Sakurai, Advanced Quantum Mechanics, Pearson Education, 2009

Programme	Joint M.Sc.						
Course Name	Introduction to Nanomaterials						
Type of Course	Core	Core					
Course Code	MGKUMPNSC05						
Course	The emphasis of the	he course	e is to	unders	tand the	e physics of	
Summary &	nanomaterials in detai	l and to ex	xplore it	s wide a	pplicatio	n. This course	
Justification	provides research-foc	cused teac	hing a	nd traini	ng for j	post-graduates	
	wishing to develop a	career in r	nano ano	d functio	nal mate	rials. Students	
	will gain profound un	derstandin	g of the	principl	es gover	ning nano and	
	functional materials' properties, behaviour and interactions as well as						
	their characterisation.						
Semester	1		Credi	t	3		
Total Student							
Learning Time	Learning Approach					Total	
(SLT)		lre	rial	ical	rs	Learning	
		Lectu	Luto	Pract	Othe	Hours	
	Authentic learning						
	Collaborative	40	40	-	40	120	
	learning						
	Case based learning						
Pre-requisite	Strong mathematical b	background	d in grad	duation l	evel is de	esirable.	
Others- Library, se	minar and assignment p	preparatio	ns, test,	journal,	discussio	on etc.	

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand and use the properties of Nano-materials in diverse fields.	U	1,5
2	Gain knowledge about the Nanomaterials, their properties, behaviour, interaction and use of them over many disciplines of science.	U, A	1,5

3	Understand the chemistry of Nanomaterials in detail and to explore the wide application.	U, R	1,5
4	Understand the constituents of matter, nanomaterials, properties and usefulness.	U	1,5
5	Able to learn how to understand the basic behaviour of Nanomaterials.	U	1,5
6	Understand size and shape dependent properties of Nanomaterials.	U, A	1,5
7	Gain knowledge about classification of Nanomaterials	U, An	1,5
8	Deep understanding on surface characteristics of Nanomaterials	U, A, An	1,5
9	Able to understand different surface energy minimization techniques.	U, A	1,5
*Rem (S), In	eember (R), Understand (U), Apply (A), Analyse (An), Evaluate nterest (I) and Appreciation (Ap)	e (E), Create (C), Skill

Module		CO No.
No.		
1	Fundamentals of Nanomaterials	
	History of Nanotechnology, Feynman's vision on Nano Science &	10045
	technology, bulk vs nanomaterials. Central importance of nanoscale	1,2,3,4,5
	morphology - small things making big differences, nanotechnology as natures	
	technology, clusters and magic numbers, nanoscale architecture. Recent	
	developments, challenges and future prospects of nanomaterials.	
2	Size and shape dependent properties of nanomaterials	
	Size and shape dependent properties, Melting points and lattice constants,	
	Surface Tension, density of states, Wettability - Specific Surface Area and	
	Pore – Composite Structure - Mechanical properties, Optical properties: Basic	6
	principles of nanomaterials- Increase in surface area to volume ratio and	
	quantum confinement effect. Surface plasmon resonance in metal	
	nanoparticles and quantum size effect in in Semiconductors, Electrical	
	conductivity: Surface scattering, change of electronic structure, quantum	
	transport, effect of microstructure.	

3	Classification of nanomaterials	
	Classification based on the dimensionality, Zero-dimensional nanostructures:	
	metal, semiconductor and oxide nanoparticles. One-dimensional	7
	nanostructures: nanowires and nanorods, Two-dimensional nanostructures:	
	thin films, Three-dimensional nanomaterials, Special Nanomaterials: Carbon	
	fullerenes and carbon nanotubes, micro and mesoporous materials, core-shell	
	structures, organic-inorganic hybrids.	
4	Surface characteristics of Nanomaterials	
	Surface science for nanomaterials, surface energy, Surface Energy	
	minimization: Sintering Ostwald ripening and agglomeration, Energy	
	minimization by Isotropic and anisotropic surfaces, Wulff plot, Surface	
	energy, surface curvature and chemical potential, Surface energy stabilization	8,9
	mechanisms, Electrostatic stabilization - Point zero charge (p.z.c), Nernst	
	Equation, Electric double layer. Electric potential at the proximity of a solid	
	surface - Debye-Huckel Screening strength. Interaction between nanoparticles	
	- Van der Waals attraction potential, DLVO Theory, steric stabilization and	
	electro steric stabilization. Nucleation and growth of nuclei, critical radius,	
	homogenous and heterogeneous nucleation.	

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar, group
Approach	activities.
Assessment Types	 Mode of Assessment 1. Continuous Internal Assessment (CIA) 2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar 3. Assignments A. Semester End examination

- 1. A.W. Adamson and A.P.Gast, Physical Chemistry of surfaces, Wiley Interscience, NY 2004.
- G. Cao and Y. Wang, Nanostructures and Nanomaterials, 2nd Ed., Imperial College Press, 2004.
- 3. R. Kelsall, I. Hamley and M. Geoghegan, Nanoscale Science and Technology, Wiley, 2005.
- 4. K. J. Klabunde, R. M. Richards, Nanoscale Materials in Chemistry, 2nd Ed., Wiley, 2009.
- 5. T. Pradeep, A text book of Nano Science and Technology, Tata McGraw-Hill Education, 2012.
- 6. G. Schmidt, Nanoparticles: from Theory to applications, Wiley-VCH, 2004
- Malkiat S. Johal, Lewis E. Johnson, Textbook Series in Physical Sciences, CRC Press, Year: 2018
- 8. G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Application, Imperial College Press, 2004.
- 9. Micheal F. Ashby, P.J. Ferreria, D.L. Schodek, Nanomaterials, Nanotechnologies and Design: An introduction for engineers and Architects.2012.
- Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, Fundamentals of Nanotechnology, CRC Press, 2009.
- Dieter Vollath, Nanomaterials: An introduction to synthesis, properties and application, WILE-VCH, 2008.
- C. N. R. Rao, H. C. Mult. Achim Müller, A. K. Cheetham The Chemistry of Nanomaterials: Synthesis, Properties and Applications, 2004.
- A.W. Adamson and A.P.Gast, Physical Chemistry of surfaces, Wiley Interscience, NY 2004.
- G. Cao and Y. Wang, Nanostructures and Nanomaterials, 2nd Ed., Imperial College Press, 2004.
- 15. R. Kelsall, I. Hamley and M. Geoghegan, Nanoscale Science and Technology, Wiley, 2005.
- 16. K. J. Klabunde, R. M. Richards, Nanoscale Materials in Chemistry, 2nd Ed., Wiley, 2009.

Programme	Joint M.Sc.						
Course Name	Practical I – General	Physics					
Type of Course	Practical -Core	Practical -Core					
Course Code	MGKUMPNSC06						
Course	At the end of this course students should acquire skills in doing						
Summary & Justification	experiments in physics as well as advanced physics.						
Semester	Ι		Credit		2		
Total Student							
Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Authentic learning Collaborative learning Case based learning	0	40	40		80	
Pre-requisite	Strong theoretical kno	wledge in	n				
Others- Library, seminar and assignment preparations, test, journal, discussion etc.							

CO	Expected Course Outcome	Learning	PSO No.	
No.		Domains		
	Upon completion of this course, students will be able to;			
1	To determine the carrier concentration, carrier mobility etc of semiconductors	A, An, S	1, 4	
2	To determine the magnetic susceptibility, curie temperature, retentivity, coercivity etc	A, An, S	1, 4	
3	To determine the Planks constant	A, An, S	1, 4	
4	To determine the diffraction pattern and wavelengths by various methods	A, An, S	1, 4	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill				
(S), Int	erest (I) and Appreciation (Ap)			

	CO
	No.
1. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier	
concentration and carrier mobility.	
2. Ultrasonic- acoustic optic technique-elastic property of a liquid.	
3. Magnetic susceptibility of a paramagnetic solution using Quinck's	
tube method.	
4. Curie temperature of a magnetic material.	
5. Dielectric Constant and Curie temperature of ferroelectric Ceramics.	
6. Draw the hysteresis curve (B – H Curve) of a ferromagnetic material	
and determination of retentivity and coercivity.	
7. Cornu's method- Determination of elastic constant of a transparent	
material	
8. Determination of e/m by Thomson 's method.	
9. Determination of e/k of Silicon.	
10. Determination of Planck 's constant (Photoelectric effect).	
11. Measurement of resistivity of a semiconductor by four-probe method	
at different temperature and determination of band gap.	
12. Determination of magnetic susceptibility of a solid by Guoy's	
method.	
13. Measurement of wavelength of laser using reflection grating.	
14. Fraunhoffer diffraction pattern of a single slit, determination of	
wavelength/slit width.	
15. Fraunhoffer diffraction pattern of wire mesh, determination of	
wavelength/slit width.	
16. Fraunhoffer diffraction pattern of double slit, determination of	
wavelength/slit width.	
17. Diffraction pattern of light with circular aperture using Diode/He-Ne	
laser.	
18. Fresnel diffraction pattern of a single slit.	

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	1. Seminar Presentation – a theme is to be discussed and identified to
	prepare a paper and present in the seminar
	2. Assignments
	A. Semester End examination
Assessment Types	 Mode of Assessment Continuous Internal Assessment (CIA) 1. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar 2. Assignments A. Semester End examination

- 1. Advanced practical physics for students, B.L Worsnop and H.T Flint, University of California.
- 2. A course on experiment with He-Ne Laser, R.SSirohi, John Wiley & Sons (Asia) Pvt.ltd
- 3. Kit Developed for doing experiments in Physics- Instruction manual, R.Srenivasan ,K.R Priolkar, Indian Academy of Sciences.
- 4. Advanced Practical Physics, S.P singh, Pragati Prakasan,
- 5. Practical Physics, Gupta, Kumar, Pragati Prakasan.
- 6. An advanced course in Practical Physics, D.Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd:

Programme	Joint M.Sc.					
Course Name	Practical II - Basic Electronics					
Type of Course	Practical -Core					
Course Code	MGKUMPNSC07					
Course	At the end of this co	ourse stud	lents sho	ould acqu	ire skills	s in designing
Summary &	and testing analog and	l digital i	ntegrated	l circuits.		
Justification						
Semester	1		Credit		2	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	0	40	40		80
Pre-requisite Others- Library, set	Strong mathematical I minar and assignment	backgroui	nd in gra ons, test,	duation l	evel is de	esirable.

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	To recognize various digital gates and ICs	A, An, S	1, 4
2	To design and implement combinational circuits using basic gates and ICs	A, An, S	1, 4
3	To design and implement sequential circuits using basic gates and ICs.	A, An, S	1, 4
4	Design and demonstrate functioning of various analog circuits	A, An, S	1, 4
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

No. No. 1. Op-Amp parameters (i) Open loop gain (ii) input offset voltage (iii) input bias current (iv)) CMRR (v) slew rate (vi) Band width No. 2. Design and construct an integrator using Op-Amp (µA741), draw the input output curve and study the frequency response. No. 3. Design and construct a differentiator using Op-Amp (µA741) for sin wave and square wave input and study the output wave for different frequencies. No. 4. Design and construct a logarithmic amplifier using Op-Amp (µA741) and study the output wave form. South construct a square wave generator using Op-Amp (µA741) for a frequency f0. 6. Design and construct a triangular wave generator using (µA741) for a frequency f0. Triangular wave generator using Op-Amp (µA741) 7. Design and construct a saw tooth wave generator using Op-Amp (µA741) Triangular wave generator using Op-Amp (µA741)
 Op-Amp parameters (i) Open loop gain (ii) input offset voltage (iii) input bias current (iv)) CMRR (v) slew rate (vi) Band width Design and construct an integrator using Op-Amp (μA741), draw the input output curve and study the frequency response. Design and construct a differentiator using Op-Amp (μA741) for sin wave and square wave input and study the output wave for different frequencies. Design and construct a logarithmic amplifier using Op-Amp (μA741) and study the output wave form. Design and construct a square wave generator using Op-Amp (μA741) for a frequency f0. Design and construct a triangular wave generator using (μA741) for a frequency f0. Design and construct a saw tooth wave generator using Op-Amp (μA741)
 current (iv)) CMRR (v) slew rate (vi) Band width 2. Design and construct an integrator using Op-Amp (μA741), draw the input output curve and study the frequency response. 3. Design and construct a differentiator using Op-Amp (μA741) for sin wave and square wave input and study the output wave for different frequencies. 4. Design and construct a logarithmic amplifier using Op-Amp (μA741) and study the output wave form. 5. Design and construct a square wave generator using Op-Amp (μA741) for a frequency f0. 6. Design and construct a triangular wave generator using (μA741) for a frequency f0. 7. Design and construct a saw tooth wave generator using Op-Amp (μA741)
 Design and construct an integrator using Op-Amp (μA741), draw the input output curve and study the frequency response. Design and construct a differentiator using Op-Amp (μA741) for sin wave and square wave input and study the output wave for different frequencies. Design and construct a logarithmic amplifier using Op-Amp (μA741) and study the output wave form. Design and construct a square wave generator using Op-Amp (μA741) for a frequency f0. Design and construct a triangular wave generator using (μA741) for a frequency f0. Design and construct a saw tooth wave generator using Op-Amp (μA741)
 output curve and study the frequency response. 3. Design and construct a differentiator using Op-Amp (μA741) for sin wave and square wave input and study the output wave for different frequencies. 4. Design and construct a logarithmic amplifier using Op-Amp (μA741) and study the output wave form. 5. Design and construct a square wave generator using Op-Amp (μA741) for a frequency f0. 6. Design and construct a triangular wave generator using (μA741) for a frequency f0. 7. Design and construct a saw tooth wave generator using Op-Amp (μA741)
 Design and construct a differentiator using Op-Amp (μA741) for sin wave and square wave input and study the output wave for different frequencies. Design and construct a logarithmic amplifier using Op-Amp (μA741) and study the output wave form. Design and construct a square wave generator using Op-Amp (μA741) for a frequency f0. Design and construct a triangular wave generator using (μA741) for a frequency f0. Design and construct a saw tooth wave generator using Op-Amp (μA741)
 and square wave input and study the output wave for different frequencies. 4. Design and construct a logarithmic amplifier using Op-Amp (µA741) and study the output wave form. 5. Design and construct a square wave generator using Op-Amp (µA741) for a frequency f0. 6. Design and construct a triangular wave generator using (µA741) for a frequency f0. 7. Design and construct a saw tooth wave generator using Op-Amp (µA741)
 4. Design and construct a logarithmic amplifier using Op-Amp (μA741) and study the output wave form. 5. Design and construct a square wave generator using Op-Amp (μA741) for a frequency f0. 6. Design and construct a triangular wave generator using (μA741) for a frequency f0. 7. Design and construct a saw tooth wave generator using Op-Amp (μA741)
study the output wave form. 5. Design and construct a square wave generator using Op-Amp (μA741) for a frequency f0. 6. Design and construct a triangular wave generator using (μA741) for a frequency f0. 7. Design and construct a saw tooth wave generator using Op-Amp (μA741)
 5. Design and construct a square wave generator using Op-Amp (μA741) for a frequency f0. 6. Design and construct a triangular wave generator using (μA741) for a frequency f0. 7. Design and construct a saw tooth wave generator using Op-Amp (μA741)
frequency f0. 6. Design and construct a triangular wave generator using (μA741) for a frequency f0. 7. Design and construct a saw tooth wave generator using Op-Amp (μA741)
 6. Design and construct a triangular wave generator using (μA741) for a frequency f0. 7. Design and construct a saw tooth wave generator using Op-Amp (μA741)
frequency f0.7. Design and construct a saw tooth wave generator using Op-Amp (μA741)
7. Design and construct a saw tooth wave generator using Op-Amp (µA741)
generator.
8. Design and construct an Op-Amp Wien bridge oscillator with amplitude
stabilization and study the output wave form.
9. Design and construct a Schmidt trigger using Op-Amp µA741, plot of the
hysteresis curve.
10. Design and construct an astable multivibrator using µA741 with duty cycle
other than 50%
11. Design and construct a RC phase shift oscillator using µA741 for a frequency
f0.
12. Design and construct a first and second order low pass Butterworth filter
using μ A741 and plot the frequency response curve.
13. Design and construct a first and second order high pass Butterworth filter
using μ A741 and study the frequency response.

Teaching Learning Approach	and	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group
		activities.
Assessment		Mode of Assessment
Types		1. Continuous Internal Assessment (CIA)
		2. Seminar Presentation – a theme is to be discussed and identified to
		prepare a paper and present in the seminar
		3. Assignments
		A. Semester End examination

- Op-Amp and linear integrated circuit Ramakanth A Gaykwad, Eastern Economy Edition, ISBN-81-203-0807-7
- 2. Electronic Laboratory Primer a design approach S. Poornachandra, B.Sasikala, Wheeler Publishing, New Delhi
- 3. Electronic lab manual Vol I, K ANavas, Rajath Publishing
- 4. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
- 5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing
- 6. An advanced course in Practical Physics, D.Chattopadhayay, C.R Rakshit, New Central

Programme	Joint M.Sc.					
Course Name	Statistical Physics					
Type of Course	Elective					
Course Code	MGKUMPNSE01	MGKUMPNSE01				
Course Summary & Justification	Statistical mechanics provides a theoretical bridge that takes you from the micro world to the macro world. This makes an attempt to derive the macroscopic properties of an object from the properties of its microscopic constituents and the interactions amongst them. It tries to provide a theoretical basis for the empirical thermodynamics. This course is designed at providing students with basic concepts of calculating properties of an energetically isolated system in equilibrium by imposing probability distribution over the set of microscopic states compatible with the external constraints imposed on the system. Using this probability distribution, average values of specified functions of the microscopic conditions of the gas can be calculated. Students will be able to understand what probability distribution really means, why average values for macroscopic conditions, and how do phase averages related to measured features of the macroscopic system etc. And helps the students to analyses how changing quantum mechanical basis leads to wholesale changes within statistical mechanics. Bose-Einstein statistics, Fermi Dirac statistics and Maxwell Boltzmann statistics will be discussed					
Semester	Ι		Credit		4	
TotalStudentLearningTime(SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	60	40	-	40	140
Pre-requisite Others- Library, se	Basics of Thermodynamics, Quantum dynamics and Probability theory. This is based on statistical methods, probability theory and the microscopic physical laws. It can be used to explain the thermodynamic behaviour of large systems <i>minar and assignment preparations, test, journal, discussion etc.</i>					

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.	
1	Knowledge of Thermodynamics and probability theory (Module 1)	U, A	2,9	
2	Understand the inadequacy of Quantum dynamics and Probability theory (Module 2)	U, A	2, 6	
3	Identify the statistical methods and microscopic physical laws. (Module 3).	An, E	2, 6	
4	Apply the principles of statistical thermodynamics that can explain the thermodynamic behaviour of large systems (Module 4)	Е	2, 5	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module		CO No.				
No.						
1	Thermodynamics and probability theory	1				
	Systems with a very large number of degrees of freedom: the need for					
	statistical mechanics, Macrostates, microstates and accessible					
	microstates, Fundamental postulate of equilibrium statistical mechanics,					
	Probability distributions, Microcanonical ensemble, Boltzmann's					
	formula for entropy					
2	Quantum dynamics and Probability theory	2				
	Canonical ensemble, partition function, free energy, calculation of					
	thermodynamic quantities, Classical ideal gas, Maxwell-Boltzmann					
	distribution, equipartition theorem, Paramagnetism, Langevin and					
	Brillouin functions, Curie's law.					

3	Statistical methods and microscopic physical laws					
	Quantum statistics: systems of identical, indistinguishable particles,					
	spin, symmetry of wavefunctions, bosons, Pauli's exclusion principle,					
	fermions, Grand canonical ensemble, Bose-Einstein and Fermi-Dirac					
	distributions, Degeneracy, Free electron gas, Pauli paramagnetism,					
	Blackbody radiation, Bose-Einstein condensation, Einstein model of					
	lattice vibrations, phonons, Debye's theory of the specific heat of					
	crystals.					
4	Principles of statistical thermodynamics	4				
	Phase diagrams, phase equilibria and phase transitions, Mean-field					
	theory of liquid-gas transition (Van der Waals model) and ferromagnet-					
	paramagnet transition (Weiss' molecular field theory), Heisenberg					
	exchange interaction and the origin of ferromagnetism, Elementary					
	ideas on Ising and Heisenberg models of ferromagnetism					

Teaching and Learning	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group
Approach	activities.
Assessment	Mode of Assessment
Types	1. Continuous Internal Assessment (CIA)
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a
	paper and present in the seminar
	3. Assignments
	A. Semester End examination

- D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University press, 1987
- 2. C. J. Thompson, Equilibrium Statistical Mechanics, Clarendon Press, 1988
- 3. R. K. Pathria, Statistical Mechanics, Elsevier, 1972
- 4. F. Reif, Fundamentals of Statistical and Thermal Physics, International Student Edition, McGraw-Hill, 1988
- 5. K. Huang, Statistical Mechanics, Wiley Eastern, 1988
- 6. L. D. Landau and E. M. Lifshitz, Statistical Physics (Par1I), 3rd Edition, Pergamon Press, 1989
- F. Reif, Statistical Physics (Berkeley Physics Course, Vol. 5), McGraw Hill, 1967
- 8. F. Mandl, Statistical Physics, 2nd edition, ELBS & Wiley, 1988
- 9. E. S. R. Gopal, Statistical Mechanics and Properties of Matter MacMillan India, 1988
- 10. R. Kubo. Statistical Physics -Problems and Solutions, North Holland, 1965
- Y. K. Lim, Problems and Solutions in Thermodynamics and Statistical Mechanics, World Scientific, 1990
- Sanchez and Bowley, Introductory Statistical Mechanics, Clarendon Press- Oxford, 1999
- Callen, H. B., Callen, H. B., Thermodynamics and an introduction to thermostatistics. Egypt: Wiley, 1985

Programme	Joint M.Sc.					
Course Name	Nanocomposites					
Type of Course	Elective					
Course Code	MGKUMPNSE02					
Course Summary	Students will gain know	Students will gain knowledge of the main types of nanocomposite materials				
& Justification	and their specific physical and chemical properties required in applications.					
	Graduates will become familiar with the methods of preparation and					
	characterization of specific physical properties of nanocomposite materials.					
	The current state of theory and modelling of nanocomposites will be					
	presented. At the end of the course, students will have enough understanding					
	of the main concepts in nanocomposites physics to allow them read and					
	understand the most important research papers in this field.					
Semester	Ι		Credit		4	
Total Student						
Learning Time	Learning Approach	ure	rial	ical	STS	Total
(SLT)		lecti	Jutor	Practi	Othe	Learning
		Π				Hours
	Authentic learning	60	40	-	40	140
	Collaborative learning					
	Case based learning					
Pre-requisite	Basics of solid-state phy	ysics (Un	dergradua	te)	1	1
Others- Library, sem	inar and assignment prep	arations,	test, jourr	nal, discus	ssion etc.	

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.	
1	Understand Metal based nanocomposite: preparation techniques and their final properties and functionality (Module 1)	U, A	1	
2	Study of Ceramic based nanocomposites: some preparation techniques, properties and applications. (Module 2)	U, A	1,7	
3	Introduction of Polymer based nanocomposites, Diblock	An, E	7	
--------	--	-------	-----	--
	Copolymer based nanocomposites: preparation, properties			
	and applications. Carbon nanotubes-based nanocomposites:			
	functionalization of CNTs will also be discussed. (Module 3).			
4	Introduction of new kind of nanocomposites, Design of	Е	7,9	
	super hard materials, Super hard nanocomposites, its			
	designing and improvements of mechanical properties will			
	also be discussed. (Module 4)			
*Remen	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),			

Interest (I) and Appreciation (Ap)

Modulo		CO
wiouuie		CO
No.		No.
1	Metal based nanocomposites:	1
	Metal- oxide or metal-ceramic composites: different aspects of their	
	preparation techniques and their final properties and functionality. Metal -	
	metal nanocomposites: some simple preparation techniques and their new	
	electrical and magnetic properties	
2	Ceramic based nanocomposites:	2
	some preparation techniques, properties and applications	
3	Polymer based nanocomposites:	3
	Diblock Copolymer based nanocomposites: preparation, properties and	
	applications.	
	Polymer- carbon nanotubes-based nanocomposites: functionalization of	
	CNTs, preparation, properties and applications.	
4	New kind of nanocomposites	4
	Fractal based glass- metal nanocomposites, its designing and fractal	
	dimension analysis, Electrical property of fractal-based nanocomposites,	
	Core-shell structured nanocomposites, Design of super hard materials, Super	
	hard nanocomposite: s, its designing and improvements of mechanical	
	properties	

Teaching and	Classroom Procedure (Mode of transaction)				
Learning	Authentic learning, case-based learning, collaborative learning, seminar,				
Approach	group activities.				
Assessment	Mode of Assessment				
Types	1. Continuous Internal Assessment (CIA)				
	2. Seminar Presentation – a theme is to be discussed and identified to				
	prepare a paper and present in the seminar				
	3. Assignments				
	A. Semester End examination				

- Nanocomposites Science and Technology P. M. Ajayan, L. S. Schadler, P. V. Braum, Wiley, 2003
- 2. Physical properties of Carbon nanotube- R. Satio, Imperial College Press, 1998
- Polymer nanocomposites, Edited by Yiu-Wing Mai and Zhong -Zeng Yu, Woodhead Publishing, 2006
- Processing and properties of Nanocomposites, Suresh Advani, World Scientific Publishing, 2007
- Polymer- Layered Silicate and Silicate and Silica Nanocomposites, Y. C. Ke and P. Stroeve, Elsevier Science, 2005
- 6. Novel synthesis and characterization of Nanostructured materials, Annelise Kopp Alves, Carlos P. Bergmann, Felipe Amorim Berutti, Springer, 2013
- Hybrid Nanocomposites for Nanotechnology; Electronic, Optical, Magnetic and Biomedical Applications, Lhadi Merhari (Ed), Springer, 2009
- Functional Polymer Nanocomposites for Wastewater Treatment, M J Hato, S S Ray (Eds), Springer Cham, 2022

SEMESTER II

Programme	Joint M.Sc.					
Course Name	Mathematical Physics II					
Type of Course	Core					
Course Code	MGKUMPNSC08					
Semester	II	Credi	it: 4			
Course	The use of mathematica	l techniqu	ues in phy	vsics cont	exts is in	evitable though
ISummary &	the physical understand	ling is in	exact and	imprecis	se. This c	course provides
Justification	some advanced topics i	in applied	l mathem	atics relev	vant to ex	xpress physical
	reality and the governing laws. Partial differential equations and complex					
	analysis encompass estin	mation, ap	proximat	ion and li	miting pro	ocess.
Total Student						
Learning Time	Learning Approach	lre	ial	cal	SI	Total
(SLT)		ectu	utor	racti	Othe	Learning
		Π	L	P		Hours
	Authentic learning					
	Collaborative learning	60	40	-	40	140
	Independent learning					
Pre-requisite	Basic mathematical kn	owledge	of comp	lex varia	bles, gro	up theory and
	differential equations					
Others- Library, field work, seminar and assignment preparations, test, journal, discussion etc.						

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Grasp the Cauchy-Riemann equations, which give the conditions a function must satisfy in order for a complex generalization of the derivative.	U	1, 4
2	Identify the general qualitative features of solutions such as existence and smoothness of solutions of various partial differential equations appearing in physics	Е	1, 8, 9

3	Use calculus of variations which seeks to find the path, curve, surface, etc., for which a given function has a stationary value (usually a minimum or maximum).	U, A	7, 9
4	Apply approximation methods such as Rayleigh-Ritz to reduce the number of degrees of freedom (DOF)	А	7,9
5	Emphasize the role of group theory as the mathematical framework for labelling symmetry properties of classical and quantum mechanical systems.	U, An	7, 9
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

Module		CO No.
No.		
1	Complex Variables:	1
	Analytic functions of a complex variable, Cauchy-Riemann conditions,	
	Power series, Cauchy's integral theorem, Conformal mapping, Singularities:	
	poles, essential singularities, Residue theorem, Contour integration and	
	examples, Analytic continuation, Multiple-valued functions, branch points	
	and branch cut integration.	
2	Partial Differential Equations:	2,3
	Partial differential equations in Physics: Laplace, Poisson and Helmholtz	
	equations; diffusion and wave equations, Applications	
3	Integral transforms:	4
	Laplace transforms and Fourier transforms, Parseval's theorem, Convolution	
	theorem, Applications, Calculus of Variations Functionals, Natural boundary	
	conditions, Lagrange multipliers, Rayleigh-Ritz method	
4	Group theory:	5
	Elements of group theory, Discrete groups with examples, Continuous groups	
	(Lie groups) [rotation group in 2 and 3 dimensions, U (1) and SU (2)],	
	Generators, Representations, Character tables for some point groups and the	
	orthogonality theorem.	
1		

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Direct Instruction, Explicit Teaching, E-learning, interactive Instruction:
Approach	Active co-operative learning, Seminar, Group Assignments, Authentic
	learning, Library work and Group discussion, Presentation by individual
	student/ Group representative
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	1. Internal Test -20 marks
	2- Assignment - Every student needs to write an assignment on a given
	topic based on the available published literature – 10 marks
	3. Seminar Presentation - A topic needs to be presented and discussed
	with the class- 10 marks
	Semester End Examination – 60 marks

- Schaum's outline series, McGraw Hill, 1964: (i) Complex Variables, (ii) Laplace Transforms, (iii) Group Theory
- M. Boas, Mathematical Methods in Physical Sciences, 2nd Edition, Wiley International Edition, 1983
- 3. E. Kreyszig, Advanced Engineering Mathematics, Wiley Eastern, 5th Edition, 1991
- 4. L. A. Pipes and L. R. Harwell, Applied Mathematics for Engineers and Physicists, McGraw-Hill, 1995
- 5. M. Artin, Algebra, Prentice-Hall India, 2002
- 6. I. N. Sneddon, The Use of Integral Transforms, Tata McGraw Hill, 1985
- D. H. Sattinger and O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics, Springer, 1986
- 8. M. Tinkham, Group Theory and Quantum Mechanics, Dover, 2003
- George B. Arfken, Hans J. Weber, Frank E. Harris, Mathematical Methods for Physicists, 7th Edition, Academic Press, 2012.
- 10. P. Dennerey and A. Kryzwicki, Mathematics for Physicists, Dover (Indian Edition), 2005
- 11. K. F. Riley, M. P. Hobson and S. J. Bence, Mathematical Methods for Physics and Engineering, Cambridge University Press (Cambridge Low-priced Edition), 1999

Programme	Joint M.Sc.					
Course Name	Quantum mechanics I					
Type of Course	Core					
Course Code	MGKUMPNSC09					
Course Summary	This course provides a s	ubstantiv	e introduc	tion to the	e mathem	atical setting to
& Justification	the formulation of quar	ntum mec	hanics and	d explain	s the basi	c concepts and
	elementary theory. It c	liscusses	the most	importar	nt 1D an	d 3D quantum
	mechanical problems	which he	elps to a	nalyse th	e concep	pt of quantum
	mechanics in potential practical applications. It also discusses Schrodinger					ses Schrodinger
	and Heisenberg formula	tions of q	uantum m	echanics.		
Semester	II		Credit		3	
Total Student						
Learning Time	Learning Approach					Total
(SLT)		ure	rial	ical	rs	Learning
		Lecti	Tuto	Pract	Othe	Hours
	Authentic learning					
	Collaborative learning	40	40	-	40	120
	Case based learning					
Pre-requisiteStrong mathematical background in graduation level is desirable.			le.			
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Students will get an understanding of linear vector spaces that are fundamental to quantum mechanics. They will also learn concepts and properties of inner-product, basis, linear operators and Hermitian operators etc. (Module 1)	U, A	6,8
2	Students will be able to understand the postulates of quantum mechanics	U, A	2
3	Students will solve various 1-dimensional time independent problems in quantum physics. This will help them to formulate such problems and understand	U, A	2,7

	the general properties of solutions. (Module 3)		
4	The student will learn to solve various 3-dimensional time independent problems like Hydrogen atom in Quantum Mechanics. Study of angular momentum and atomic structure will be crucial to understand other subjects like spectroscopy (Module 4).	An, E	2,7
*Darmar	and an (D) Understand (U) Amerika (A) An alway (An) Exalts at	(\mathbf{E}) \mathbf{C} = \mathbf{E}	$C) \mathbf{CI}_{\mathbf{III}} (\mathbf{C})$

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module		CO
No.		No.
No. 1	Module 1 Linear Vector Spaces de Broglie's hypothesis: matter waves and experimental confirmation, wave packets; Linear vector spaces: inner product, Hilbert space, Wave Functions; Linear operators: Hermitian operators, Projection operators, Commutator algebra, Unitary operators, Eigenvalues and Eigen vectors of a Hermitian operator; Basis: Representation in discrete bases, Matrix representation of kets, bras, and operators, Change of bases and unitary transformations, Matrix representation of the eigenvalue problem, Representation in position bases.	No. 1
2	Module 2 Postulates of Quantum Mechanics Postulates of Quantum Mechanics: State of a System, Probability Density, Superposition Principle, Observables as Operators, Position and Momentum operators, Position and Momentum representation of state vector, Connecting the position and momentum representations, Measurement in quantum mechanics, Expectation values, Commuting operators and Uncertainty relations; Time evolution of the state: Time- independent potentials and Stationary States, Time evolution operator, infinitesimal and finite Unitary Transformations; Conservation of probability; Time evolution of expectation values: Ehrenfest theorem; Poisson's brackets and commutators; Matrix and Wave mechanics	2
3	Module 3 Time independent 1D problems Discrete, continuous and mixed spectrum; symmetric potentials and parity; Infinite square well potential; Symmetric potential well; Finite square well potential: Scattering and bound state solutions; Free particle; Delta function potential; Harmonic oscillator.	3

4	Module 4	4
	Time independent 3D problems	
	Free particle in 3-dimensions: spherically symmetric solution; Particle in a	
	3D box; Schrodinger equation in presence of central Potential; Orbital	
	angular momentum: eigen values and eigen functions of L^2 and L_z ;	
	Hydrogen Atom; Scattering: Cross Section, Amplitude and Differential	
	Cross Section,	
	Scattering of Spin-less Particles, The Born Approximation, Validity of the	
	Born Approximation	

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Authentic learning, case-based learning, collaborative learning, seminar, group					
Approach	activities.					
Assessment	Mode of Assessment					
Types	1. Continuous Internal Assessment (CIA)					
	2. Seminar Presentation – a theme is to be discussed and identified to					
	prepare a paper and present in the seminar					
	3. Assignments					
	A. Semester End examination					

- E. Merzbacher, Quantum Mechanics, 2nd Edition, Wiley International Edition, 1970
- Nouredine Zettili, Quantum Mechanics: Concepts and Applications, Wiley India, 2016
- 3. V. K. Thankappan, Quantum Mechanics, Wiley Eastern, 1985
- 4. 1J. J. Sakurai, Modern Quantum Mechanics, Benjamin Cummings, 1985
- R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. 3, Narosa Pub. House, 1992
- P. M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata Mc Graw-Hill, 1977
- 7. David J. Griffiths, Introduction to Quantum Mechanics, Cambridge University Press, 2017
- 8. Linus Pauling, E. Bright Wilson, Introduction to Quantum Mechanics with Applications to Chemistry, Dover Publications, 2012.

Programme	Joint M.Sc.					
Course Name	Condensed Matter Physics I					
Type of Course	Core					
Course Code	MGKUMPNSC10					
Course	The course aims to m	ake the l	earner ur	nderstand	l the phy	vsics of solids,
Summary &	which forms the four	ndation f	for the st	udy of c	other fiel	ds inside and
Justification	outside the condense	d matter	physics.	The co	ourse pro	ovides a clear
	picture about the solid	s and the	ir proper	ties used	to chang	e our society.
Semester	II		Credit		3	
Total Student						
Learning Time	Learning Approach					Total
(SLT)		Ire	rial	ical	S	Learning
		Lectu	Tuto	Pract	Othe	Hours
	Authentic learning					
	Collaborative	40	40		40	120
	learning	40	40	-	40	120
	Case based learning					
Pre-requisite	Basic understanding of	of gradua	te level	quantum	mechan	ics and solid-
	state physics.					
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Students will understand the underlying physics of solid-state materials. (Modules 1-4)	U, A	1, 6
2	Students will get an opportunity to revisit the fundamentals of solid state physics- crystal structure and space groups (Module 1)	R, U	1, 5
3	Students will learn the crystal symmetry and the macroscopic physical properties and diffraction of waves by crystals. (Module 2)	U, A	1, 5
4	The student will learn about different bindings in crystals, lattice dynamics and the thermal properties of crystals. (Module 3).	A, E	1,5, 9

	Students will learn the details of band theory and the		
5	developments of semiconductor physics and bandgap	A, E	1, 5, 8
	engineering. (Module 4)		

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module		CO
No.		No.
1	Module 1	1.2
-	Classification of condensed matter: crystalline, non-crystalline, nanophase	-,-
	solids, liquids, Crystalline solids: Bravais lattices, crystal systems, point	
	groups, space groups and typical structures	
2	Module 2	3
	Crystal symmetry and macroscopic physical properties	
	tensors of various ranks: pyroelectricity, ferroelectricity, electrical	
	conductivity, piezoelectricity and elasticity tensors, Propagation of elastic	
	waves in crystals and measurement of elastic constants, Diffraction of waves	
	by crystals: X-rays, neutrons, electrons, Bragg's law in direct and reciprocal	
	lattice, Structure factor, Principles of diffraction techniques, Brillouin zones.	
3	Module 3	4
	Types of binding, Ionic crystals	
	Born Mayer potential, Thermochemical Bom-Haber cycle, Van der Waals	
	binding: rare gas crystals and binding energies, Covalent and metallic binding:	
	characteristic features and examples, Lattice dynamics: monoatomic and	
	diatomic lattices, Born-von Karman method, Phonon frequencies and density	
	of states, Dispersion curves, inelastic neutron scattering, Reststrahlen Specific	
	heat, Thermal expansion, Thermal conductivity, Normal and Umklapp	
	processes.	
4	Module 4	5
	Band Theory and Semiconductor Physics	
	Free electron theory of metals, Thermal and transport properties, Hall effect	
	Electronic specific heat, Bloch functions, Nearly free electron approximation,	
	Formation of energy bands, Gaps at Brillouin zone boundaries, Electron states	
	and classification into insulators, conductors and semimetals, Effective mass	
	and concept of holes, Fermi surface, Cyclotron resonance, Semiconductors:	
	carrier statistics in intrinsic and extrinsic crystals, electrical conductivity,	
	Liquid crystal: inermotropic and lyotropic, inematics and sematics:	
	applications, Amorphous/glassy states.	

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar, group
Approach	activities.
Assessment	Mode of Assessment
Types	3. Continuous Internal Assessment (CIA)
	4. Seminar Presentation – a theme is to be discussed and identified to
	prepare a paper and present in the seminar
	5. Assignments
	B. Semester End examination

- 1. Charles Kittel, Introduction to Solid State Physics, Wiley, 5th Edition, 1976
- 2. A. J. Dekker, Solid State Physics, Prentice Hall, 1957
- N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976
- 4. J. S. Blakemore, Solid State Physics, 2nd Edition, Cambridge University Press, 1974
- 5. Mendel Sachs, Solid State Theory, McGraw-Hill, 1963
- 6. Harald Bach and Hans Luth, Solid-State Physics, Springer International Student Edition, Narosa Pub. House, 1991
- 7. Gerald Burns, Solid State Physics, Academic Press, 1987
- 8. Marder, M. P. (2010). Condensed Matter Physics. Germany: Wiley.
- 9. Ali Omer, Elementary solid state physics, Pearson Education (1999)
- 10. Simon, S. H. (2013). The Oxford Solid State Basics. United Kingdom: OUP Oxford.
- Sander, L. M. (2009). Advanced Condensed Matter Physics. United Kingdom: Cambridge University Press.
- 12. Azároff, L. V. (1986). Introduction to Solids. India: Tata McGraw-Hill.

Programme	Joint M.Sc.					
Course Name	Nanomaterials and characterizations					
Type of Course	Core					
Course Code	MGKUMPNSC11					
Course	This course provides	research	-focused	teaching	and trai	ning for post-
Summary & Justification	graduates wishing to develop a career in nano and functional materials. Students will gain an in-depth understanding of the various nanofabrication techniques, synthesis strategies, and different characterization techniques					
Semester	II		Credit		3	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Total Learning Hours	
	Authentic learning Collaborative learning Case based learning	40	40	-	40	120
Pre-requisite	Strong mathematical background in graduation level is desirable.					
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

CO No.	Expected Course Outcome	Learning Domains	PSO No.		
	Upon completion of this course, students will be able to;				
1	Students will get an understanding of different Synthesis	IT A	1 2 7		
1	(Module 1) (Module 1)	0, A	1, 3, 7		
	Students will learn physical, chemical and biological	T T 4	1 0 5		
2	characterization methods	U, A	1, 2, 7		
	(Module 2)				
3	Students will learn AFM, SEM, Deep UV and X-ray	An, E	1, 2, 4		
	based lithography techniques (Module 3).				
	Students will learn in detail about X-ray diffractometry,				
4	Scanning probe microscopy and scanning tunnelling	Е	1 9		
	microscopy, Optical microscopy- SEM, TEM, AFM,	L	1, 9		
	UV-Vis-NIR spectrometry and FTIR (Module 4)				
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill					
(S), Int	(S), Interest (I) and Appreciation (Ap)				

Module		CO
No.		No.
1	Synthesis strategies	1
	bottom-up approaches- sol- gel technique-co-precipitation hydrolysis:	
	sonochemical method- combustion technique- colloidal precipitation- template	
	process	
	Top-down approach: solid state sintering- grain growth-electric arc method-ion	
	beam induced nanostructures- grinding-ball milling-control of grain size	
2	Physical, chemical and biological methods	2
	Types of Nanomaterials: Carbon Nanotubes, Fullerene, Quantum dots, nanowire,	
	nanocones, graphene and metal nanoparticles	
	mert gas condensation - KF plasma-ion sputtering- laser ablation- laser pyrorysis-	
	molecular beam epitaxy -chemical vapour deposition – electrode deposition-	
	solvothermal synthesis -metal nanocrystals by reduction-arrested precipitation -	
	photochemical synthesis-liquid -liqid interface-cluster compounds.	
	Biological methods: use of bacterial fungi actinomycetes for nanoparticle	
	synthesis, magneto tactic bacteria for natural synthesis of magnetic nanoparticles-	
	mechanism of formation – role of plants in nanoparticle synthesis	
3	Lithographic techniques	3
	AFM based nanolithography and nano manipulation, E beam lithography and	
	SEM based nanolithography and nano manipulation, ion beam lithography,	
	oxidation and metallization. Mask and its application. Deep UV lithography, X-	
	ray based lithography	
4	Characterization Techniques	4
	X-ray diffractometry- fundamental of X-ray diffraction, powder diffraction	
	method, small angle x-ray scattering and wide-angle x-ray scattering, quantitative	
	determination of phase, strain and particle size, Scanning probe microscopy and	
	scanning tunnelling microscopy- basic principle and instrumentation and	
	application, Optical microscopy- SEM, TEM, AFM: operation principle,	
	instrumentation and application, UV-Vis-NIR spectrometry and FTIR - basic	
	principle	
	FF	

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar, group
Approach	activities.
Assessment	Mode of Assessment
Types	1. Continuous Internal Assessment (CIA)
	2. Seminar Presentation $-a$ theme is to be discussed and identified to prepare a
	paper and present in the seminar
	3. Assignments
	A. Semester End examination

- Chemistry of nano materials: synthesis, properties and applications by C. N. R. Rao et, al, Wiley-VCH, 2004
- Introduction to Nanoscience and Nanotechnology by K. K. Chattopadhyay and A. N. Banerjee, PHI Learning View All, 2009
- Nanoparticle technology handbook by Masuo Hosokawa et. al, Elsevier Science, 2007
- 4. Handbook of nanoscience, engineering- Goddard et. al, CRC Press, 2012
- 5. Nanomaterials handbook Yory Gogotsi, Taylor & Francis, 2006
- 6. Springer handbook of nanotechnology- Bharat Bhushan, 2004
- Scanning probe microscopy: Analytical methods (nanoscience and technology)-Roland Wiesendanger, Springer, 1994
- Advanced x-ray techniques in research and industries-A. K. Singh, New IOS Press Publication, 2005
- 9. X- ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edition Harold P. Klug, Leroy E Alexander, Wiley- Interscience, 1974
- Transmission electron microscopy: A textbook for materials science (4- vol set)-David B. Williams and C. Barry carter, Springer, 2009
- Introduction of X-ray crystallography-M. M. Woolfson, Cambridge University Press, 1970
- 12. Physical principles of electron microscopy: an introduction to TEM, SEM and AEM Ray F. Egerton, Springer, 2005

Programme	Joint M.Sc.					
Course Name	Practical III - Electro	Practical III - Electronics				
Type of Course	Practical -Core					
Course Code	MGKUMPNSC12					
Course	At the end of this co	ourse stud	lents sho	ould acqu	ire skills	s in designing
Summary &	and testing analog and	l digital i	ntegrated	l circuits.		
Justification						
Semester	II	II Credit 2				
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	0	40	40		80
Pre-requisite Others- Library, se	Strong mathematical background in graduation level is desirable. seminar and assignment preparations, test, journal, discussion etc.					

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.	
1	To recognize various digital gates and ICs	A, An, S	1, 4	
2	To design and implement combinational circuits using basic gates and ICs	A, An, S	1, 4	
3	To design and implement sequential circuits using basic gates and ICs.	A, An, S	1, 4	
4	Design and demonstrate functioning of various analog circuits	A, An, S	1, 4	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

	СО
	No.
1. Design and construct a first order narrow band pass Butterworth filter	
using µA741.	
2. Solving differential equation using μA741	
3. Design and construct ccurrent to voltage and voltage to current	
converter (µA741)	
4. Astable multivibrator using 555 timer, study the positive and negative	
pulse width and free running frequency.	
5. Monostable multivibrator using 555 timers and study the input output	
waveform.	
6. Voltage controlled Oscillator using 555 timer	
7. Design and construct a Schmitt Trigger circuit using IC 555.	
8. Design and test a two stage RC coupled common emitter transistor	
amplifier and find the bandwidth, mid-frequency gain, input and output	
impedance.	
9. Design and test a RC phase shift oscillator using transistor for a given	
operating frequency.	
10. Voltage controlled Oscillator using transistor	
11. Study the function of (i) analog to digital converter using IC 0800 (ii)	
digital to analog converter DAC 0808	
12. Study the application of op-Amp (μ A741) as a differential amplifier.	
13. Solving simultaneous equation using op-Amp (µA741).	

and	Classroom Procedure (Mode of transaction)			
	Authentic learning, case-based learning, collaborative learning, seminar, group			
	activities.			
	Mode of Assessment			
	4. Continuous Internal Assessment (CIA)			
	5. Seminar Presentation – a theme is to be discussed and identified to			
	prepare a paper and present in the seminar			
	6. Assignments			
	B. Semester End examination			
	and			

- Op-Amp and linear integrated circuit Ramakanth A Gaykwad, Eastern Economy Edition, ISBN-81-203-0807-7
- 2. Electronic Laboratory Primer a design approach S. Poornachandra, B.Sasikala, Wheeler Publishing, New Delhi
- 3. Electronic lab manual Vol I, K ANavas, Rajath Publishing
- 4. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
- 5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing
- 6. An advanced course in Practical Physics, D.Chattopadhayay, C.R Rakshit, New Central

Programme		Joint M.Sc.						
Course Name		Physics IV – Advanced Physics						
Type of Course		Practical -Core						
Course	Code	MGKUMPNSC13						
Course	;	At the end of this c	course st	udents s	hould	acquire sk	cills in doing	
Summa	ary &	experiments in physics	s as well	as advan	ced pł	nysics.		
Justific	cation							
Semest	er	II		Credit		2		
Total	Student							
Learni	ng Time	Learning Approach					Total	
(SLT)			ıre	rial	ical	LS	Learning	
			Lecti	Futo	Pract	Othe	Hours	
		Authentic learning	0	40	40		80	
		Collaborative						
		learning						
		Case based learning						
Pre-rec	quisite	Strong theoretical knowledge in general physics						
Others-	Library, se	ninar and assignment preparations, test, journal, discussion etc.						
СО	Expected	Course Outcome			Learning	PSO No.		
No.						Domains		
	Upon com	pletion of this course, st	udents w	ill be abl	e to;			
1	To determ	ine the intensity profile	, beam d	ivergenc	e etc		1.4	
1	of Diodes/	Lasers				A, An, 5	1,4	
2	To determi	ne the refractive index	of variou	s materia	ıls	A, An, S	1,4	
2	To determ	nine the coefficient of viscosity of given			A An S	1 4		
3 liquids						A, All, S	1,4	
4	To determine the young's modulus of materials A, An, S 1, 4					1, 4		
5	To determ	ine the dielectric con	stants as	well as	s the	A An S	1 4	
	dipole mor	nent of various molecul	es			, , , <u>,</u> , , , , , , , , , , , , , , ,	1, 7	
*Reme	mber (R), U	nderstand (U), Apply (A	A), Analy	vse (An),	Evalu	ate (E), Cr	eate (C), Skill	
(S), Int	(S), Interest (I) and Appreciation (Ap)							

	CO No.
1. Study the beam divergence, spot size and intensity profile of Diode/He-	
Ne laser.	
2. Determine the numerical aperture of optical fibre and propagation of	
light through it.	
3. Determine the refractive index of the material using Brewster angle	
setup.	
4. Absorption bands of KMnO4 using incandescent lamp. Determine the	
wave lengths of the absorption bands. Determine the wave lengths of the	
absorption bands by evaluating Hartman's constants.	
5. Determine the co-efficient of viscosity of the given liquid by oscillating	
disc method.	
6. Measure the thermos emf of a thermocouple as function of temperature.	
Also prove that Seebeck effect is reversible.	
7. Determine the Young's modulus of the material of a bar by flexural	
vibrations.	
8. Using Michelson interferometer determine the wavelength of light.	
9. Study the temperature dependence of dielectric constant of a ceramic	
capacitor and verify Curie-Wiess law	
10. Study the dipole moment of an organic molecule (acetone).	
11. Determine the dielectric constant of a non-polar liquid.	
12. Photograph/Record the absorption spectrum of iodine vapour and a	
standard spectrum. Analyze the given absorption spectrum of iodine	
vapour and determine the convergence limit. Also estimate the	
dissociation energy of iodine (wave number corresponding to the	
electronic energy gap = $759800 \text{ m} \cdot 1$)	
13. Determine the dielectric constant of a non-polar liquid.	
14. Determine the charge of an electron using Millikan oil drop experiment.	
15. Linear electro optic effect (Pockel effect), Frank Hertz experiment.	
16. Frank Hertz experiment determination of ionization potential.	
17. Koening's method, Poisson's ratio of the given material of bar.	
18. Determination of Stefan's constant of radiation from hot body	

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar,
Approach	group activities.
Assessment Types	Mode of Assessment Continuous Internal Assessment (CIA) 1. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar 2. Assignments A. Semester End examination

- 1. Advanced practical physics for students, B.L Worsnop and H.T Flint, University of California.
- 2. A course on experiment with He-Ne Laser, R.SSirohi, John Wiley & Sons (Asia) Pvt.ltd
- 3. Kit Developed for doing experiments in Physics- Instruction manual, R.Srenivasan ,K.R Priolkar, Indian Academy of Sciences.
- 4. Advanced Practical Physics, S.P singh, PragatiPrakasan,
- 5. Practical Physics, Gupta, Kumar, PragatiPrakasan.
- 6. An advanced course in Practical Physics, D.Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd:

Programme	Joint M.Sc.					
Course Name	Electromagnetic Theory					
Type of Course	Elective					
Course Code	MGKUMPNSC03					
Course	The course aims to	develop	the fu	ndamenta	l concep	ots in classical
Summary &	electrodynamics for s	students	who are	already	familiar	with the basics
Justification	of electromagnetism. Maxwell's equations, the grand theory that					
	unifies electricity, magnetism and light will be introduced and they					
	will be equipped with advanced mathematical methods to tackle					
	various boundary valu	ue proble	ms in el	ectrodyna	amics.	
Semester	II		Credi	it	4	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	60	40	-	40	140
Pre-requisite	Basic knowledge in c	lassical e	lectrody	namics.		
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	To understand the concepts of boundary value problems to be able to use various techniques for solving the boundary value problems	U, A	2, 6
2	Apply Maxwell's Equations in Various situations (Module 2).	U, A	2, 8

	The introduction of conservation laws and investigation			
	of the propagation of electromagnetic waves in various			
3	media leads to a clear understanding and applications of	An, E	2,9	
	Maxwell's equations			
	(Module 3)			
4	Analyze the electromagnetic radiation phenomena	E	8	
	(Module 4).			
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill				
(S), Interest (I) and Appreciation (Ap)				

Module		CO
No.		No.
1	Electrostatics:	1
	Laplace and Poisson equations, Boundary value problems, Dirichlet and Neumann	
	boundary conditions, Method of images, Concept of the Green function and its use	
	in boundary value problems	
2	Module 2	2
	Magnetostatics:	
	Ampere's law and Biot-Savart's law, Concept of a vector potential, Maxwell	
	equations and electromagnetic waves, Maxwell equations (both differential and	
	integral formulations), Boundary conditions on field vectors D, E, B and H, Vector	
	and scalar potentials	
3	Module 3	3
	Gauge transformations:	
	Lorentz and Coulomb gauge, Green function for the wave equation, Poynting's	
	theorem, Conservation laws for macroscopic media, Propagation of plane waves	
	and spherical waves in free space, dielectrics and conducting media, Reflection and	
	refraction of electromagnetic waves, Superposition of waves, Radiation from an	
	oscillating dipole and radiation from an accelerating charge.	
4	Module 4	4
	Electromagnetic stress tensor, Wave Guides:	
	Modes in rectangular and cylindrical wave guides (conducting and dielectric),	
	Resonant cavities, Evanescent waves, Energy dissipation, Q of a cavity	

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Authentic learning, case-based learning, collaborative learning, seminar,			
Approach group activities.				
Assessment	Mode of Assessment			
Types	1. Continuous Internal Assessment (CIA)			
	2. Seminar Presentation – a theme is to be discussed and identified to			
	prepare a paper and present in the seminar			
	3. Assignments			
	A. Semester End examination			

- 1. J. D. Jackson, Classical Electrodynamics, Wiley Eastern, 2nd Edition, 1975
- David J. Griffiths, Introduction to Electrodynamics, Prentice Hall of India, 2nd Edition, 1989
- 3. J. R. Reitz, F. J. Milford and R. W. Christy, Foundations of Electromagnetic Theory, 3rd Edition, Narosa Pub. House, 1979
- 4. P. Lorrain and D. Corson, Electromagnetic Fields and Waves, CBS Publishers and Distributors, 1986
- 5. B. H. Chirgwin, C. Plumpton and C. W. Kilmister, Elementary Electromagnetic Theory, Vols. 1, 2 and 3" Pergamon Press, 1972
- William Hart Hayt, John A. Buck, Engineering Electromagnetics, McGraw-Hill, 2012

Programme	Joint M.Sc.						
Course Name	Nanophotonics						
Type of Course	Elective						
Course Code	MGKUMPNSE04						
Course	This course aims to im	part kno	wledge abo	out the	physics	of photo	onics. This
Summary &	course also aims to prov	vide knov	vledge abou	it photo	onic crys	tals and a	pplications
Justification	of photonic crystal device	ces.					
Semester	II		Credit	4			
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours	Learning
	Authentic learning Collaborative learning Case based learning	60	40	-	40	140	
Pre-requisite	Solid state devices, Semiconducting nanostructures, VLSI						
Others- Library, se	eminar and assignment pr	eparatio	ns, test, jou	rnal, di	iscussion	etc.	

CO	Expected Course Outcome	Learning	PSO	
No.		Domains	No.	
	Upon completion of this course, students will be able to;			
1	understand the basic and advance concepts of nanophotonics.	U,R	1	
2	Understand the concepts of near- field optics and near- field scanning optical microscopy,	U	3, 4	
3	understand the basic concepts of plasmonics	U	4	
4	understand the concepts of photonic crystals	U	3, 4	
5	understand the applications of photonic crystals	U	3, 4	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),				
Interest (I) and Appreciation (Ap)				

Module		CO		
No.		No.		
1	Fundamentals of photonics and photonic devices:	1		
	lasers, LEDs, optical modulators (acoustic -optic and electro- optic), optical			
	fibers and fiber optic components, frequency conversion, propagation and			
	confinement of photons and electrons, tunneling, band gap, Quantum			
	confinement effects, interaction dynamics, electronic energy transfer and			
	emission			
2	Near- field optics and Near- field scanning optical microscopy:	2		
	Quantum Dots, Single molecular spectroscopy, and Nonlinear Optical			
	processes, Time resolved studies, Heterostructures, Metallic			
	Nanoparticles and Nanorods, Metallic Nanoshells, Local Field Enhancement,			
	Subwavelength Aperture Plasmonics, Plasmonic Wave Guiding, Applications			
	of Metallic Nanostructure, Radiative Decay Engineering			
3	Introduction to plasmonics:	3		
	Metallic nanoparticles and nanorods, metallic nanoshells, local field			
	enhancement, sub-wavelength aperture plasmonics, plasmonic waveguiding,			
	applications of metallic nanostructures, Evanescent wave excitation, dielectric			
	sensitivity, radioactive decay engineering, metal dipole interaction			
4	Photonic crystals:	4		
	Introduction to photonic crystals, Modelling of photonic crystals, Photonic			
	crystal optical circuitry, Non-linear photonic crystals, Photonic crystal fibres,			
	photonic band gap materials			
5	Applications of Photonic crystals:	5		
	Applications in communication and sensing, Near field imaging of biological			
	systems, Nanoparticles for optical diagnosis, upconverting nanopores for			
	bioimaging			

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment Types	 Mode of Assessment Continuous Internal Assessment (CIA) Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Assignments Assignments Semester End examination

- 1. Nanophotonics: Paras N. Prasad, Wiley, 2004
- Nanophotonics with Surface Plasmons: Valdimir M. Shalaev, Stoshi Kawata, Elsevier Science, 2006
- Principles of Nanophotonics, Motoichi Ohtsu, Kiyoshi Kobayashi, Makato Naruse, Taylor & Francis, 2008
- Photonic devices, Jia Ming Liu, Cambridge University Press; Reissue edition, 2009
- 5. Integrated Photonics: Fundamentals, Gines Lifante, Wiley, 2003
- 6. Photonic crystals, Kurt Busch, Stefan Lolkes, Wiley, 2006
- 7. Nanophotonics, Arthur McGurn, Springer Cham, 2018
- Fundamentals and Applications of Nanophotonics, Joseph W. Haus (Editor), Woodhead Publishing Series in Electronic and Optical Materials, Elsevier, 2016

Programme	Joint MSc					
Course Name	Industrial Internship					
Course Credit	2					
Type of Course	CORE					
Course Code	MGKUMPNSC14					
Course	The candidate shall do a	an industi	rial visit in	any of the	e researcl	n institute.
Summary &						
Justification						
Semester	4					
Total Student			1	u		Total
Learning Time	Learning Approach	ture	oria	tice	lers	Learnin
(SLT)		Lec	Tute	Prac	Otł	g
	Libuarry mark lab					Hours
	Library work, lab	-	-	-	-	-
	work, Team work,					
	independent learning					
Pre-requisite						

CO		Expected Course Outcome	Learning	PSO
No.			Domains	No.
	At the end of	f the course the students are expected to		
	To clearly	present and discuss the research objectives,	А	2, 3,
	methodolog	y, analysis, results and conclusions effectively.		4,
				5
2	Acquire a	comprehensive knowledge of the area subject of	Ар	1, 7
	study			
3	Gain deeper	knowledge of methods in the topic of study.	А	6
4	Able to cont	ribute to research and development work.	U	3
5	Undertake	U	5	
	relevant top	ic.		
6	Able to plan and use adequate methods to conduct specific			6
	tasks in give			
7	Create, anal	yse and critically evaluate different problems and	С	7
	their solutio	ns.		
8	Gain a conse	ciousness of the ethical aspects of research.	Е	6
Teac	ching and	Classroom Procedure (Mode of transaction)		
Learning		E-learning, interactive Instruction: Seminar, A	Authentic lea	arning, ,
Approach		Library work, laboratory work, Team work, inde	ependent lear	ming and
		Group discussion, Presentation of research work.		
Assessment		Mode of Assessment		
Types		Evaluation of the presentation by both internal and	external example	miners.

I

SEMESTER III

Programme	Joint M.Sc.						
Course Name	Quantum mechanics II						
Type of Course	Core						
Course Code	MGKUMPNSC15						
Course	The course aims to pr	ovide an	introduc	tion to a	dvanced	level topics in	
Summary &	quantum mechanics.	These	include	quantur	n theory	y of angular	
Justification	momentum, quantum	concept	of identio	cal partic	les and a	n introduction	
	to relativistic and mul	lti-particl	e quantu	m mecha	nics. Th	is includes the	
	formulation of quar	ntum th	eorem (of spin	and or	bital angular	
	momentum. This course also formulates the non-relativistic scattering						
	theory and relativistic	quantum	n mechan	ics.			
Semester	III		Credit		4		
Total Student							
Learning Time	Learning Approach					Total	
(SLT)		arte	rial	ical	rs	Learning	
		Lecti	Tuto	Pract	Othe	Hours	
	Authentic learning						
	Collaborative	60	40	-	40	140	
	Case based learning						
Pre-requisite		-		-			
Others- Library, seminar and assignment preparations, test, journal, discussion etc.							

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Get a complete understanding of total angular momenta and spin angular momenta of particles. They will be able to understand the quantum mechanical techniques	U, A	4, 6

	to find the total angular momenta of combined system.				
	This is very important to understand further studies of				
	spectroscopic methods and techniques (Module I)				
	Understand the quantum mechanical problems by				
	approximation techniques. They will be able to study				
2	the time independent perturbation theory for	U, A	4,6		
	understanding the quantum mechanical problems.				
	(Module 2)				
	The student will be able to understand the quantum				
	mechanical theories of time dependent perturbation				
2	theory. They can solve the quantum mechanical	A a E	6.0		
3	problems more accurately using this perturbation	All, E	0, 9		
	method (Module 3).				
	Students will be able to understand the concept of				
	identical particles. They will study the symmetric and				
4	antisymmetric wavefunctions and can understand the	F	689		
-	profound physics of bosons and fermions. Students will	L	0, 0, 7		
	be able to understand the elements of relativistic				
	quantum mechanics (Module 4).				
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill					
(S), Interest (I) and Appreciation (Ap)					

Module		CO
No.		No.
1	Module 1	1
	Quantum Theory of Angular Momentum	
	Review of Orbital angular momentum; Total angular momentum:	
	Commutation relations, eigenvalues, Matrix representation of angular	
	momentum; Spin angular momentum: Pauli spin matrices and their	
	properties, Two component wave function, Pauli's equation; Addition of	
	Angular momentum and Clebsch-Gordan coefficients.	

2	Module 2	2
	Time Independent Perturbation theory	
	Time-independent perturbation theory: Non degenerate perturbation	
	theory, The Stark effect, Degenerate perturbation theory: Spin Orbit	
	Coupling, Fine structure; Variational method; WKB method,	
	Bound states for potential wells with no rigid walls, Tunnelling through a	
	potential barrier	
3	Module 3	3
	Time Dependent Perturbation theory	
	Schrodinger and Heisenberg Pictures of Quantum Mechanics; The	
	interaction Picture and Time- dependent	
	perturbation theory: Transition probability; Constant perturbation;	
	Harmonic perturbation;	
	Adiabatic and sudden approximations; Interaction of atoms with	
	radiation: Transition rates for absorption	
	and stimulated emission of radiation, Dipole approximation, Electric	
	dipole selection rules	
4	Module 4	4
	Relativistic and Multi Particle Quantum Mechanics	
	Klein-Gordon equation: Free particle solutions, Probability density; Dirac	
	equation: Dirac matrices, Probability density, Solution of free Dirac	
	equation and positrons; Many-particle systems: Interchange	
	symmetry; Systems of distinguishable non-interacting particle; Systems	
	of identical particles: Exchange degeneracy, Symmetrization postulate;	
	Constructing symmetric and anti-symmetric wave functions, Pauli's	
	exclusion principle	

Teaching and	nd Classroom Procedure (Mode of transaction)					
Learning	Authentic learning, case-based learning, collaborative learning, seminar,					
Approach	group activities.					
Assessment	Mode of Assessment					
Types	1. Continuous Internal Assessment (CIA)					
	2. Seminar Presentation $-a$ theme is to be discussed and identified to					
	prepare a paper and present in the seminar					
	3. Assignments					
	A. Semester End examination					

- E. Merzbacher, Quantum Mechanics, 2nd Edition, Wiley International Edition, 1970
- 2. J. J. Sakurai Modern Quantum Mechanics, Benjamin / Cummings, 1985
- Nouredine Zettili, Quantum Mechanics: Concepts and Applications, Wiley India, 2016
- P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1991
- L. D. Landau and E. M. Lifshitz, Quantum Mechanics -Nonrelativistic Theory, 3rd Edition, Pergamon, 1981
- P. M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill, 1977
- 7. J. Bjorken and S. Drell, Relativistic Quantum Mechanics, McGraw-Hill, 1965
- 8. A. Messiah, Quantum Mechanics, Vols. 1 and 2, North Holland, 1961
- 9. John S. Townsend, A Modern Approach to Quantum Mechanics, University Science Books, 2000

Programme	Joint M.Sc.						
Course Name	Condensed Matter Physics II						
Type of Course	Core						
Course Code	MGKUMPNSC16						
Course	This course aims to m	nake the l	learner u	nderstand	the phy	sics of solids,	
Summary &	mostly concerned with	th their J	properties	s that ar	e of grea	at utility, and	
Justification	result from the distrib	ution of	electrons	in metal	ls, semic	onductors and	
	insulators. The cours	se discus	ses imp	ortant ac	lvances	in condensed	
	matter physics which	n would	facilitate	e better	understa	unding of the	
	material behaviour at the nanometre scale.						
Semester	III		Credit		4		
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Authentic learning Collaborative learning Case based learning	60	40	-	40	140	
Pre-requisite Others- Library, se	Strong background in basic quantum mechanics and condensed matter physics.						

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Students will learn about dielectrics and ferroelectrics (Module 1)	U, A	2, 5
2	Students will learn about the magnetic properties of materials and perform mathematical derivations of different quantities. (Module 2)	U, A	2, 5
3	The student will learn about optical properties of solids and also superconductivity found in solids. This will help in understanding the different facets of solids. (Module 3).	A, E	5,7

4	Students will learn to identify the types of point and extended defects in solids. (Module 4)	A, E	5,7	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module No.		CO No.
1	Module 1 Dielectrics and Ferroelectrics Internal electric field in a dielectric, Clausius-Mossotti and Lorentz-Lorenz equations, Point dipole, deformation dipole and shell models, Dielectric dispersion and loss, Ferroelectrics: types and models of ferroelectric transition.	1
2	Module 2 Magnetic Properties of Materials Diamagnetic susceptibility, Quantum theory of paramagnetism, Transition metal ions and rare earth ions in solids, Crystal field effect and orbital quenching, Ferromagnetic and antiferromagnetic ordering, Curie-Weiss theory, Heisenberg theory, Curie and Neel temperatures, Domain walls, Spin waves and magnon dispersion.	2
3	Module 3 Optical properties of solids: Band to band absorption, excitons, polarons, Colour centres, Luminescence, Photoconductivity. Superconductivity, experimental and theoretical aspects, new materials and models	3
4	 Module 4 Defects in Solids Point defects: Thermodynamics of point defects, Frenkel and Schottky defects, Formation enthalpies, Diffusion and ionic conductivity, Superionic materials. Extended defects: dislocations, models of screw and edge dislocations, Burgers vector, Stress field around dislocations, interaction between dislocations with point defects, Work hardening. 	4

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Authentic learning, case-based learning, collaborative learning, seminar,			
Approach	group activities.			
Assessment Types	 Mode of Assessment 4. Continuous Internal Assessment (CIA) 5. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar 6. Assignments B. Semester End examination 			

- 1. Charles Kittel, Introduction to Solid State Physics, Wiley, 5th Edition, 1976
- 2. A. J. Dekker, Solid State Physics, Prentice Hall, 1957
- N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976
- 4. J. S. Blakemore, Solid State Physics, 2nd Edition, Cambridge University Press, 1974
- 5. Mendel Sachs, Solid State Theory, McGraw-Hill, 1963
- A. O. E. Animalu, Intermediate Quantum Theory of Solids, Prentice Hall, 1977.
- Fröhlich, H. (1950). Theory of Dielectrics: Dielectric Constant and Dielectric Loss. United Kingdom: At the Clarendon Press.
- Lines, M. E., Glass, A. M. (2001). Principles and Applications of Ferroelectrics and Related Materials. United Kingdom: OUP Oxford
- 9. Coey, J. M. D. (2010). Magnetism and Magnetic Materials. United Kingdom: Cambridge University Press.
- 10. Azároff, L. V. (1986). Introduction to Solids. India: Tata McGraw-Hill.
- Sander, L. M. (2009). Advanced Condensed Matter Physics. United Kingdom: Cambridge University Press.

Programme	Joint M.Sc.					
Course Name	Application of Nanomaterials					
Type of Course	Core					
Course Code	MGKUMPNSC17					
Course	This course provides	research	-focused	l teachin	g and tra	ining for post-
Summary &	graduates wishing to develop a career in nano and functional					
Justification	materials. Students will gain an in-depth understanding of the various					
	application of nanomaterials in the field of medicine, agriculture, food,					
	textile, defence, aerospace etc.					
Semester	III		Credi	t	3	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	40	40	-	40	120
Pre-requisite	Strong background in basic quantum mechanics and condensed matter physics.					
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.	
1	Understand the applications of nanotechnology in medical field	U, A	2, 5	
2	Student will learn about the applications of nanotechnology in the field of agriculture and food sector	U, A	2, 5	
3	Understand the importance of nanotechnology in textile and cosmetics sector	A, E	5,7	
4	Understand the applications of nanotechnology in defence and aerospace field.	A, E	5,7	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module		CO
No.		No.
1	Biomedical Applications	1
	Nanoparticles and Micro-organism- Biosensors- Bioreceptors and their	
	properties - Biochips-	
	Integrated nanosensor networks for detection and response- DNA based	
	biosensors and	
	diagnostics- Natural nanocomposite systems; spider silk, bones, shells -	
	Nanomaterials in	
	bone substitutes and dentistry - Implants and Prosthesis -Tissue	
	Engineering – Neuroscience	
	-Neuro-electronic Interfaces -Nanorobotics- Photodynamic Therapy -	
	Protein Engineering –	
	Nanosensors in Diagnosis-Drug delivery - Cancer therapy and other	
	therapeutic applications.	
2	Agricultural and Food Sector Applications	2
	Nanotechnology in Agriculture -Precision farming, Smart delivery	
	systems – Insecticides	
	using nanotechnology – Potential of nano-fertilizers – Potential benefits	
	in Nanotechnology	
	in Food industry – Global Challenges- Product innovation and Process	
	improvement-	
	Consumer benefits- Food processing - Packaging Packing materials;	
	physical properties-	
	Improvements of mechanical and barrier properties- Antimicrobial	
	functionality- Active	
	packaging materialsInformation and communication technology-	
	Sensors- RF	
	identification- Food safety- Nanomaterial based Food diagnostics -	
	Contaminant detection –	
	Intelligent packaging- Nanoengineered Food ingredients- Potential risks	
	to Nanofood to	
	consumers	
3	Applications in Textile and Cosmetics Sector	3
---	--	---
	Nanofibre production – Electrospinning and charge injectionmethod –	
	morphological control-	
	yarns and polymide nanofibers- Carbon Nanotube and Nanofibre	
	Reinforced Polymer Fibres-	
	multifunctional polymer nanocomposites- Improvement of polymer	
	functionality- Nylon-6	
	nanocomposites from polymerization- Dyeable Polypropylene -	
	nanocoatings and surface	
	modifications - Nano-filled polypropylene fibers - UV resistant,	
	antibacterial, self-cleaning,	
	flame retardant textiles - Lightweight bulletproof vests and shirts,	
	Colour changing property,	
	Waterproof and Germ proof, Cleaner kids clothes, Wired and Ready to	
	Wear textiles-	
	Cosmetics; Formulation of Gels, Shampoos, Hair-conditioners-	
	Nanomaterials in Sun-screen	
	UV protection – Color cosmetics	
	-	
4	Defence and Aerospace Applications	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures-	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination-	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of medical	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of medical countermeasures-	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of medical countermeasures- Nanotechnology based satellite communication system- Guidance,	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of medical countermeasures- Nanotechnology based satellite communication system- Guidance, Navigation and control-	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of medical countermeasures- Nanotechnology based satellite communication system- Guidance, Navigation and control- Spacecraft thermal control- mini, micro, nanosatellite concepts- Fiber	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of medical countermeasures- Nanotechnology based satellite communication system- Guidance, Navigation and control- Spacecraft thermal control- mini, micro, nanosatellite concepts- Fiber optic and Chemical	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of medical countermeasures- Nanotechnology based satellite communication system- Guidance, Navigation and control- Spacecraft thermal control- mini, micro, nanosatellite concepts- Fiber optic and Chemical microsensors for space craft and launch support- Micro/Nano pressure	4
4	Defence and Aerospace Applications Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre exposure protection and decontamination- Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of medical countermeasures- Nanotechnology based satellite communication system- Guidance, Navigation and control- Spacecraft thermal control- mini, micro, nanosatellite concepts- Fiber optic and Chemical microsensors for space craft and launch support- Micro/Nano pressure and temperature	4

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar,
Approach	group activities.
Assessment	Mode of Assessment
Types	7. Continuous Internal Assessment (CIA)

8.	Seminar Presentation – a theme is to be discussed and identified to
prepar	e a paper and present in the seminar
9.	Assignments
C.	Semester End examination

REFERENCES /COMPULSORY READINGS

- Mark. A, Ratner and Daniel Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Idea", Pearson, 2003.
- 2. Bharat Bhushan, "Springer Handbook of Nanotechnology", Barnes & Noble 2004.
- 3. Neelina. H, Malsch (Ed.), "Biomedical Nanotechnology", CRC Press 2005.
- 4. Udo. H, Brinker, Jean-Luc Mieusset (Eds.), "Molecular Encapsulation: Organic Reactions in Constrained Systems", Wiley Publishers 2010.
- 5. Jennifer Kuzma and Peter Ver Hage, "Nanotechnology in agriculture and food production", Woodrow Wilson International Center, 2006.
- 6. Lynn. J, Frewer, Willehm Norde. R. H, Fischer and Kampers. W. H "Nanotechnology in the Agri- food sector", Wiley-VCH Verlag, 2011.
- 7. Brown. P. J and Stevens. K "Nanofibers and Nanotechnology in Textiles", Woodhead Publishing Limited, Cambridge, 2007.
- 8. Mai. Y-W "Polymer Nano composites", Woodhead publishing, 2006.
- 9. Chang. W.N "Nanofibres fabrication, performance and applications", Nova Science Publishers Inc, 2009.
- 10. Helvajian. H and. Robinson. E.Y "micro and nanotechnology for space systems" the aerospace corporation, Micrograph , 1997.
- 11. Margaret. E, Kosal, "Nanotechnology for Chemical and Biological defence, Springer 2009.
- 12. A. K. Alves (Ed) Technological Applications of Nanomaterials, Springer Cham, 2022

Programme	Joint M.Sc.
Course Name	Synthesis of Nanomaterials
Type of Course	Practical
Credit Value	2
Course Code	MGKUMPNSC18

Course Name	Synthesis of different	Nanomate	rials.			
Semester	III					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
		0	40	40		80
Pre-requisite	Basic knowledge in practical chemistry (Undergraduate level).					

CO No.	Expected Course Outcome	Learning Domains	PSO No.	
1	To Acquire sound knowledge about the fundamentals and importance of Nanomaterials.	R, U, An	3,4,5	
2	To compare and correlate various Nanomaterials synthesis techniques.	U, A, An	1,3,4,5,6,7	
3	To learn the handling of different chemicals (for nanomaterial synthesis), glassware, and precautions to be taken for safety in a chemistry lab	R, U, A	3,4,5	
4	To learn the synthesis of different nanomaterials (bio- based nanomaterials, green synthesis of nanomaterials, etc.)	U, A, An, S	4,5	
5	To perform experiments individually and to gain knowledge about principles and techniques involved in various experiments (nanomaterial synthesis)	An, A, S, I	5,6,7	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module		CO No.
No.		
1	Extraction of Nanocellulose, Extraction of Nanochitin, Synthesis of	1,2,3,4,5
	different sized Ag nanoparticles by aqueous method, Synthesis of	
	different sized Au nanoparticles by aqueous method, Chemical	
	synthesis of CdSe Quantum dots with different sizes.	
2	Sol-gel synthesis of ZnO nanoparticles, green synthesis of ZnO	1,2,3,4,5
	nanoparticles, Coprecipitation synthesis of magnetic (iron oxide)	
	nanoparticles, Synthesis of metal oxide nanotubes,	
	Hydro/Solvothermal synthesis of metal oxide nanostructures of	
	different morphology by varying parameters, Synthesis of SnO ₂	
	nanostructures, Hydrothermal synthesis of TiO2 nanoparticles,	
	Synthesis of Graphene and Graphene Oxide, Synthesis of nanosilica.	

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Contact classes, Library work, Tutorials, Demonstrations, Workshops, Virtual laboratory videos			
Assessment	Mode of Assessment			
Types	A. Lab/Experiment skills			
	B. Lab record/Report			
	C. Viva-voce			
	D. Lab Discipline (participation, punctuality, accuracy)			
	E. Semester End examination			

- Nanostructures and Nanomaterials- Synthesis, Properties & applications by Guozhong Cao, Imperial College Press, (2006). Publisher: World Scientific Publishing Company; 2 edition (4 January 2011) ISBN-13: 978-9814324557
- Nanoparticles and Nanostructured Films- Preparation Characterization and Applications by Janos H. Fendler, WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 1998. Publisher: Wiley VCH (28 May 1998) ISBN-13: 978-3527294435
- 3. Nanomaterials and Nanochemistry by C. Brechignac.P. Houdy M. Lahmani, Springer-Verlag (2007). (For Unit III-Part I Chapter I)
- PADINJAKKARA A, Scarinzi G, Santagata G, Malinconico M, Razal JM, Thomas S, Salim NV. Enhancement of Adhesive Strength of Epoxy/Carboxyl-Terminated Poly(butadiene-co-acrylonitrile) Nanocomposites Using Waste Hemp Fiber-Derived Cellulose Nanofibers. ACS Industrial & Engineering Chemistry Research. 2020, 59, 23, 10904-10913. https://pubs.acs.org/doi/abs/10.1021/acs.iecr.0c01053

Programme	Joint M.Sc.
Course Name	Characterization of Nanomaterials
Type of Course	Practical
Credit Value	2
Course Code	MGKUMPNSC19

Course	Characterization of dif	fferent nan	omaterials			
Summary &						
Justification						
Semester	III					
Total Student			1	al		Total
Learning	Learning Approach	ture	oria	stica	ers	Learning
Time (SLT)		Lec	Tute	Prac	Oth	Hours
		0	40	40		80
Pre-requisite	Basic knowledge in pr	cactical che	emistry (Uno	dergraduat	e level).	•

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	To acquire sound knowledge about the fundamentals and importance of different characterization techniques (chemical, morphological, thermal, electrical etc.) for nanomaterials.	R, U, An	
2	To compare and correlate various characterization techniques for nanomaterials.	U, A, An	
3	To learn the handling of different characterization techniques for nanomaterials and precautions to be taken for safety.	R, U, A	
4	To learn the basic/ working principle of different characterization techniques for nanomaterials.	U, A, An, S	
5	To perform experiments (characterizations) individually and to gain knowledge about instrument operation and analysing of data.	An, A, S, I, Ap	
*Rem (S), Ii	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), nterest (I) and Appreciation (Ap)	Create (C), S	Skill

Module No.		CO No.
1	Studies of (synthesized) different nanomaterials using: Optical microscope, Scanning electron microscope, transmission electron microscope, confocal laser scanning microscopy, and atomic force microscope. Studies of different nanomaterials using X-ray diffraction, UV-visible spectroscopy, FT-IR spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Raman spectroscopy, Absorption and emission Spectroscopy.	1,2,3,4,5
2	Characterization of different nanomaterials using: Thermogravimetric	1,2,3,4,5
	analyser (TGA), Differential Scanning Calorimetry (DSC), and	
	Vibrating sample magnetometer.	

Teaching and Learning	Classroom Procedure (Mode of transaction) Contact classes, Library work, Tutorials, Demonstrations, Workshops, Virtual
Approach	laboratory videos
Assessment	Mode of Assessment
Types	 A. Lab/Experiment skills B. Lab record/Report C. Viva-voce D. Lab Discipline (participation, punctuality, accuracy) E. Semester End examination

- Introduction to Nanoscience and Nanotechnology, by K K Chattopadhyay, PHI Learning Pvt. Ltd. New Delhi 2019, ISBN-13: 978-81-203-3608-7.
- 2. Characterization of Materials Vol 1 &2, by Elton N. Kaufmann, John Wiley and Sons Publication, 2003. New Jersey.
- Principles of instrumental analysis, Douglas A Skoog, Donald M West, Saunders College, Philadelphia. Publisher: Cengage; 6 edition (1 November 2014) ISBN-13: 978-81-315-25579.
- 4. NANO: The Essentials- Understanding Nanoscience and Nanotechnology, by T Pradeep, Tata McGraw Hill Education Pvt. Ltd. New Delhi) ISBN-13: 978-0-07-061788-9
- X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition -Harold P. Klug, Leroy E. Alexander, Publisher: Wiley-Blackwell; 2nd Revised edition edition (1 January 1974) ISBN-13: 978-0471493693

- Transmission Electron Microscopy: A Textbook for Materials Science (4-Vol Set)- David B.
 Williams and C. Barry Carter, Publisher: Springer; 1st ed. 1996. Corr. 6th printing edition (15 April 2005) ISBN-13: 978-0306453243
- Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM Ray F. Egerton, Publisher: Springer; Softcover reprint of hardcover 1st ed. 2005 edition (12 October 2010) ISBN-13: 978-1441938374
- Springer handbook of Nanotechnology ed. Bharat Bhushan (Springer), Publisher: Springer-Verlag (15 May 2006) ISBN-13: 978-3540343660
- Nanoparticles and Nanostructured Films- Preparation Characterization and Applications by Janos H. Fendler, WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 1998. Publisher: Wiley VCH (28 May 1998) ISBN-13: 978-3527294435

Programme	Joint M.Sc.						
Course Name	Nuclear and Particle	Nuclear and Particle Physics					
Type of Course	Elective Credit: 4						
Course Code	MGKUMPNSE05						
Course	This course looks a	This course looks at physics within the nucleus, exploring the					
Summary &	consequences of qua	ntum ph	sics at	the high	h energi	es, and short	
Justification	distances, explored by nuclear and particle physics. It begins with a						
	review of relativistic	review of relativistic and quantum mechanics, the symmetries of					
	fermions and bosons,	and the	forces o	f nature.	Further,	it goes on to	
	explore the nature of	these for	rces in tl	ne nuclea	ar and pa	article physics	
	domain, and see ho	w they	are rela	ted to a	lecays a	ind scattering	
	processes.						
	This course will intre-	oduce th	e fundan	nental pa	articles a	ind composite	
	states, including nuc	clei, whi	ich appe	ear on s	subatomi	c scales and	
	investigate the quantu	ım numb	ers and s	symmetri	es assoc	iated with the	
	interactions of these	particles	. We wi	ll discus	s the m	odels used to	
	describe the phenomena observed on the subatomic scale, and explore						
	both their many succ	esses an	d their s	hortcomi	ings. Als	so discuss the	
	experimental methods	used to e	explore tl	ne subato	mic wor	ld.	
Semester	III		Credit		4		
Total Student							
Learning Time	Learning Approach	Ire	ial	cal	STS	Total	
(SLT)		lectu	Jutor	racti	Othe	Learning	
		Ι		Ч		Hours	
	Authentic learning						
	Collaborative	60	40		40	140	
	learning	00	40	-	40	140	
	Case based learning						
Pre-requisite	Basics of Atomic s	stucture,	Nuclear	physics,	Quantu	m mechanics	
	(Undergraduate)						
Others- Library, se	minar and assignment p	preparati	ons, test,	journal,	discussio	on etc.	

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
	Upon completion of this course, students will be able to;		
	The module encompasses a detailed exposure to nuclear		
1	structure and models. A qualitative study on estimation	U, A	1,6
	of transition rates also be discussed (Module 1)		
2	This module discusses different nuclear interaction	U, A	1,6
	problems (Module 2)		
3	The student will get knowledge about nuclear reactions	An. E	1.6
	and decay (Module 3).	,	,
4	The student will get theoretical understandings of	E	1.4
	elementary particles and its interactions (Module 4)	-	-, -
*Reme	mber (R), Understand (U), Apply (A), Analyse (An), Evalu	uate (E), Crea	te (C), Skill
(S), Int	erest (I) and Appreciation (Ap)		

Module		CO No.
No.		
1	Module 1	1
	Nuclear Structure and Models	
	Basic properties of nuclei: Masses and relative abundances, mass	
	defect, size and shape, binding energy, magnetic dipole moments and	
	electric quadrupole moments, Liquid drop model - Semi-empirical	
	mass formula of Weizsacker - Nuclear stability Mass parabolas - Bohr-	
	Wheeler theory of fission - Fermi gas model Shell model - Spin-orbit	
	coupling - Magic numbers - Angular momenta and parities of nuclear	
	ground state - qualitative discussion and estimates of transition rates -	
	Magnetic moments and Schmidt lines - Collective model of Bohr and	
	Mottelson - Nilsson Model - oblate and Prolate.	

2	Module 2	2
	Nuclear Interactions	
	Nuclear forces - Two body problem - Ground state of deuteron -	
	Magnetic moment - Quadruple moment - Tensor forces - Meson theory	
	of nuclear forces - Yukawa potential - Nucleon-nucleon scattering,	
	scattering cross section - Low energy n-p scattering-phase shift -	
	proton-proton scattering - Effective range theory - Characteristics of	
	nuclear force - Spin dependence,	
	charge independence and charge symmetry - Isospin formalism.	
3	Module 3	3
	Nuclear Reactions and Nuclear Decay	
	Reaction dynamics, the Q value of Nuclear reaction, Scattering and	
	reaction cross sections Compound nucleus formation and breakup,	
	nuclear fission and heavy ion induced reactions, fusion reactions, types	
	of nuclear reactors, Beta decay - Fermi's theory - Fermi-Curie Plot -	
	Fermi and Gamow - Teller selection rules - Allowed and forbidden	
	decays - Decay rates - Theory of Neutrino - Helicity of neutrino -	
	Helicity measurement - Theory of electron capture - Non-conservation	
	of parity - Gamma decay - Internal conversion - Multipole transitions	
	in nuclei - Nuclear isomerism - Angular correlation in successive	
	gamma emissions.	
4	Module 4	4
	Particle Physics	
	Types of interactions between elementary particles - Hadrons and	
	leptons, their masses, spin parity decay structure, the quark model, the	
	confined quarks, colored quarks, Experimental evidence for quark	
	model, The quark-gluon interaction, Gellmann- Nishijima formula,	
	Symmetries and conservation laws, C, P and CPT invariance and	
	applications of symmetry arguments to particle reactions, parity non	
	conservation in weak interactions, Exchange Bosons of the weak	
	interaction, electroweak unification.	

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar,
Approach	group activities.
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	1. Internal Test -20 marks
	2- Assignment – Every student needs to write an assignment on a given
	topic based on the available published literature – 10 marks
	3. Seminar Presentation – A topic needs to be presented and discussed
	with the class- 10 marks
	A. Semester End Examination – 60 marks

- 1. Introductory Nuclear Physics, Kenneth S. Krane, Wiley, New York, 1987
- 2. Introduction to Elementary Particles, D. Griffiths, Wiley, 1987
- Nuclear Physics, R. R. Roy and B. P. Nigam, New Age International, New Delhi, 1983
- The Particle Hunters, Yuval Ne'eman& Yoram Kirsh, Cambridge University Press, 1996
- 5. Concepts of Nuclear Physics, B. L. Cohen, TMH, New Delhi, 1971
- 6. Theory of Nuclear Structure, M. K. Pal, Scientific and Academic Edn., 1983
- 7. Atomic Nucleus, R. D. Evans, McGraw-Hill, New York, 1955
- 8. Nuclear Physics, I. Kaplan, 2nd Edn, Narosa, New Delhi, 1989
- 9. Introduction to Nuclear Physics, H. A. Enge, Addison Wesle, London, 1975
- 10. Introductory Nuclear Physics, Y. R. Waghmare, Oxford-IBH, New Delhi, 1981
- 11. Elementary Particles, J. M. Longo, McGraw-Hill, New York (1971)
- 12. Particles and Nuclei, B. Povh, K. Rith, C. Scholz & F. Zetche, Springer, 2002

Programme	Joint M.Sc.					
Course Name	Nanomagnetic Materials					
Type of Course	Elective					
Course Code	MGKUMPNSE06					
Course	This course provides	This course provides research-focused teaching and training for post- graduated wishing to develop a corpor in pape and functional				
Summary &	materials. Students	will ga	in an	in-depth	n unde	rstanding of
Justification	nanomagnetic materia	als inclue	ding the 1 of nano	size de magnetic	pendence materia	e, fabrication, ls
Semester	III		Credit		4	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning					
	Collaborative learning Case based learning	60	40	-	40	140
Pre-requisite	Strong background in	basic qu	antum m	echanics	and con	densed matter
	physics.					
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
	Upon completion of this course, students will be able to;		
	Student will learn about the basics of nanomagnetic		
1	materials including ferromagnetism, magnetic	U, A	1,6
	susceptibilities, magneto resistance etc		
2	Understand the size dependence of magnetic materials	U, A	1,6
	and magneto electronics		
3	Understand the different methods of fabrication and	An E	1.6
	characterization of nanomagnetic materials	,	1, 0
4	Understand the applications of nanomagnetic materials	Е	1, 4
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), S			
(S), Int	terest (I) and Appreciation (Ap)		

Module No.		CO No.
1	Module 1	1
	Ferromagnetism and Magneto Resistance	
	Basics of ferromagnetism, Effect of bulk structuring of Magnetic	
	properties, Dynamics of Nanomagnets, Nanopore containment of magnetic	
	properties, Nanocarbon ferromagnets	
	Giant Magneto resistance, GMR, Applications in data storage, Ferro fluids,	
	Band structure in magnetic fields, Parallel and perpendicular field	
	Magnetic susceptibilities, Disorder-order transformations. Spintronics	
2	Module 2	2
	Size dependence of Magnetic Materials and Magneto-electronics	
	Super paramagnetism, Effect of grain-size, Magneto-transport, Fermi's	
	golden rule and mean free path, Ballistic vs. diffusive regimes, Persistent	
	currents, Magnetization, Ferroelectrics.	
	Electronic Properties and Quantum Effects, Magneto-electronics:	
	Magnetism and Magnetotransport in Layered Structures, Magneto optics,	
	magnetoelectrics.	
3	Module 3	3
	Fabrication and Characterization of Nanomagnetic materials	
	Particulate Nanomagnets – Geometrical Nanomagnets – Fabrication	
	Techniques Scaling - Characterization using Various Techniques -	
	Imaging Magnetic Micro spectroscopy - Study of Ferromagnetic & and	
	Antiferromagnetic Interfaces - Optical Imaging - Lorentz Microscopy -	
	Electron Holography of Magnetic Nanostructures -Magnetic Force	
	Microscopy	

4	Module 4	4
	Applications and Devices	
	Magnetic Data Storage - Introduction - Magnetic Media - Properties -	
	Materials Used - Write Heads - Read Heads - Magnetoresistance -	
	General - in Normal Metals and in Ferromagnetic Materials - Future of	
	Magnetic Data Storage - Magneto-Optics and Magnetooptic recording -	
	Kerr Effect – Faraday Effect, Magnetic Semiconductors, Spintronics	
	devices, noise reduction.	

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar,
Approach	group activities.
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	1. Internal Test -20 marks
	2- Assignment – Every student needs to write an assignment on a given
	topic based on the available published literature – 10 marks
	3. Seminar Presentation – A topic needs to be presented and discussed
	with the class- 10 marks
	A. Semester End Examination – 60 marks

- Principles of Nanomagnetism: Alberto P. Guimarães, Springer Berlin, Heidelberg, 2009
- 2. Nanomagnetism and Spintronics: Fabrication, Materials, Characterization and Applications, Farzad Nasirpouri and Alain Nogaret, World Scientific, 2011
- 3. Fine Particle Magnetism, Bandyopadhyay Bibek, Atlantic Publishers and Distributors, 2002
- Magneto-optics: S. Sugano, N. Kojima (Editors), Springer Berlin, Heidelberg, 2000

- 5. Magnetic Materials: Fundamentals and Applications (2nd ed.), Spaldin, N., Cambridge University Press, Cambridge, 2010.
- Introduction to Magnetic Materials, 2nd Edition, L. C. Cullity and C. D. Graham, IEEE Press, Willey.
- Claude Fermon, Marcel Van de Voorde (Editors) Nanomagnetism: Applications and Perspectives, Germany: Wiley, 2017.
- 8. Chris Binns (Editor), Nanomagnetism: Fundamentals and Applications, Netherlands: Elsevier Science, 2014.
- Akinobu Yamaguchi, Atsufumi Hirohata, Bethanie Stadler (Eds.) Nanomagnetic Materials: Fabrication, Characterization and application. (2021). Netherlands: Elsevier Science.

SEMESTER 4

Programme	Joint M.Sc.					
Course Name	Dissertation					
Course Credit	12					
Type of Course	CORE					
Course Code	MGKUMPNSC20					
Course	The candidate shall do	a researcl	h project ii	n any of th	ne resear	ch institute.
Summary &	This follows discussio	n with th	e Examina	ation Boar	rd consis	sting of the
Justification	Chairman, the Internal	Examiner	and the E	xternal Ex	aminer.	
Semester	IV	IV				
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learnin g Hours
	Library work, lab work, Team work, independent learning	-	-	-	-	-
Pre-requisite	Should complete semest of the interdisciplinary science and nanotechnol	er I, II an areas in t ogy. Liter	d III. Apti he realm o rature surv	tude for re of interfac ey.	esearch v e betwe	work in one en physical

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
	At the end of the course the students are expected to		
	To clearly present and discuss the research objectives, methodology, analysis, results and conclusions effectively.	А	2, 3, 4, 5
2	Acquire a comprehensive knowledge of the area subject of study	Ар	1,7
3	Gain deeper knowledge of methods in the topic of study.	А	6
4	Able to contribute to research and development work.	U	3
5	Undertake independent, original and critical research on a relevant topic.	U	5
6	Able to plan and use adequate methods to conduct specific tasks in given frameworks and to evaluate this work.	U	6
7	Create, analyse and critically evaluate different problems and their solutions.	С	7
8	Gain a consciousness of the ethical aspects of research.	E	6, 9

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	E-learning, interactive Instruction: Seminar, Authentic learning, ,		
Approach	Library work, laboratory work, Team work, independent learning and		
	Group discussion, Presentation of research work.		
Assessment Mode of Assessment			
Types	Evaluation of the presentation by both internal and external examiners.		

Programme	Joint M.Sc.					
Course Name	Viva-Voce					
Course Credit	4					
Type of Course	CORE					
Course Code	MGKUMPNSC21					
Course	The comprehensive	e viva-voce	e shall be	conducted	by the E	xamination
Summary &	Board consisting of	of the Cha	airman, th	e Internal	Examin	er and the
Justification	External Examiner	. Thoroug	h understa	anding of	all the I	M.Sc. level
	course contents					
	and of the recent	trends in	the broad	area of j	physical	sciences and
	nanotechnology are	e evaluated				
Semester	IV					
Total Student			1	al		Total
Learning Time	Learning	ture	oria	otic	Jers	Learning
(SLT)	Approach	Leci	Tute	Prac	Oth	Hours
	Classroom	-	-	-	-	-
	studies, lab					
	work, library					
	Library work,					
	independent					
	learning etc.					
Pre-requisite	Basic as well as in-	depth know	wledge in	the coures	es he/she	studied

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
	At the end of the course the students are expected		
	to;		
1	Achieve fundamental and in-depth knowledge of	А	3
	the subject		
2	Acquire more in-depth knowledge of the major	Ap	1,2,3,4,5,6,7
	subject of study		
3	Deeper knowledge of methods in the major	А	1, 4
	subject of study.		
4	Be able to contribute to research and development	U	3, 8, 9
	work.		
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill			
(S), Interest (I) and Appreciation (Ap)			

Teaching	and	Classroom Procedure (Mode of transaction)		
Learning		E-learning, interactive Instruction:, Seminar, Authentic learning, ,		
Approach		Library work		
		, laboratory work, Team work, independent learning and Group		
		discussion, Presentation of research work		
Assessment Mode of Assessment				
Types		Thorough understanding of all the M.Sc. level course contents and		
		recent trends in the broad area of chemical sciences are evaluated. The		
		candidate will be asked questions based on the whole syllabus he/she		
		studied in the entire programme. How he/she answered or responded		
		the questions asked will be considered for evaluation.		

ADD-ON COURSES

In addition to Core, elective and practical courses, School of Nanoscience and Nanotechnology, Mahatma Gandhi University will offer add-on courses such as;

- Nano catalysis
- > Social, ethical and legal issues of Nanoscience and Nanotechnology
- Nano sensors
- Advanced nanobiology
- Waste management, and Water purification through Nanoscience and Nanotechnology.

The course structure and syllabus will be announced before commencement of each semesters. The lectures will be delivered by reputed Professors/ Scientists from other Universities/ Institutions in India or Abroad.

MODEL QUESTION PAPER

JOINT M. Sc. PROGRAMME

MAHATMA GANDHI UNIVERSITY & KANNUR UNIVERSITY SEMESTER

END SEMESTER EXAMINATION (YEAR/ MONTH)

COURSE CODE: COURSE NAME

Time: 3 Hours

Max. Marks: 60

Part A. Answer any 10 Questions (Each question carries 2 marks)

1.	 •
2.	 •
3.	 •
4.	 •
5.	 •
6.	 •
7.	 •
8.	 •
9.	 •
10.	 •
11.	 •
12.	 •
13.	 •
14.	 •

Part B. Answer any 4 Questions (Each question carries 5 marks)

1.	
2.	
3.	
Δ	
т. 5	
э.	•••••••••••••••••••••••••••••••••••••••
6.	
7.	

Part C. Answer any 2 Question (Each question carries 10 marks)

1.	
2.	
3	
5.	
4.	