QUANTITATIVE TECHNIQUES

- The value of π is a :
- Variable
b) constant
c) parameter
d) none of these
- The equation, $4 x^{2}+7 x-50=0$ is a :
- Linear equation
b) third degree polynomial
c) quadratic equation
d) identity
- The number 2.5 is a :
- Natural number
b) integer
c) rational number
d) irrational number
- Which of the following is an infinite sequence:
- 1,3,5,7
b) $2,6,10,14$
c) $2,5,8,11$
d) $16,8,4,2,1$
- The sequence $20,15,10,5$, \qquad is :
- An increasing sequence
b) a decreasing sequence
c) an oscillatory sequence
d) none of the above

Which is the sixth term of the sequence $0,15,30,45, \ldots \ldots$

- 6
b) 60
c) 75
d) 90
- The general term of the sequence $5,8,11,14,17,20$ is
- 5
b) 11
c) 17
d) 20
- The $13^{\text {th }}$ term of the sequence, $9,6,3,0, \ldots .$. is
- 12
b) 30
c) -12
d) -27
- Which term of the AP $4,10,16, \ldots$.. is 100 .
- 16
b) 17
c) 10
d) 12
- The sum of first 10 terms of the AP $50,40,30, \ldots \ldots$ is
- 150
b) -40
c) 50
d) 120
- If the $3^{\text {rd }}$ and $5^{\text {th }}$ terms of an AP are 21 and 37 respectively, then the $4^{\text {th }}$ term is
- 20
b) 24
c) 29
d) 27
- If a is the first term and r is the common ratio, then the $\mathrm{n}^{\text {th }}$ term in a geometric progression is
- ar^{2}
b) $a+n^{r}$
c) $a r^{n}-1$
d) $a r^{n-1}$
- If three consecutive terms in a GP are $5, \ldots, 125$, then the middle term is :
- 25
b) 50
c) 100
d) 75
- If the $1^{\text {st }}$ and $3^{\text {rd }}$ terms of an AP are 14 and 4 , then the middle term is:
- 24
b) 10
c) 9
d) 8
- A statement of equality of two algebraic expression is called...
- Function
b) equation
c) set
d) none of these
- The degree of the equation $3 x^{3}-5 x^{2}+9 x+15$ is.....
- 9
b) 5
c) 3
d) 2
- Degree of a linear equation is,
- 3
b) 1
c) 2
d) 4
- Equations in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ are termed as :
- Linear equation
b) quadratic equation
c) Function
d) None of these
- Proper factors of 10 are
- 10 and 1
b) 10 and 5
c) 2 and 5
d) 1 and 5
- Trivial factors of 15 are
- 3 and 5
b) 1 and 15
c) 3 and 15
d) 1 and 3
- Variables are those characteristics which
- Can be directly measured
b) remains the same in all situations
c) remains the same in given situations
d) None of these
- Income, expenditure, savings etc are examples of
- Constant
b) Parameter
c) Variable
d) None of these
- Degree of an equation is
- Lowest power of the unknown quantity
b) zero
c) highest power of the unknown quantity
d) None of these

24. The degree of a linear equation is
a) 0
b) 1
c) 2
d) None of these
25. The degree of a quadratic equation is
a) 0
b) 1
c) 2
d) None of these
26. Numbers used for counting are
a) Integers
b) Rational numbers
c) Natural numbers
d) None of these
27. Number 1 is
a) Prime number
b) Composite number
c) Neither prime or composite
d) None of these
28. Numbers like $2,3,5,7,11 \ldots$ are
a) Prime numbers
b) Composite numbers
c) Neither prime or composite
d) None of these
29. Numbers like $4,6,8,9,10 \ldots$ are
a) Prime numbers
b) Composite numbers
c) Neither prime or composite
d) None of these
30. Number 2 is
a) Prime number
b) even number
c) even prime number
d) None of these
31. Rational number is
a) a variable
b) an integer
c) ratio of integers
d) None of these
32. Real numbers consist of
a) Rational numbers only
b) Irrational numbers only
c) both a \& b
d) None of these
33. Zero is
a) Additive identity
b) Multiplication identity
c) both a \& b
d) None of these
34. Number 1 is
a) Additive identity
b) Multiplication identity
c) both a \& b
d) None of these
35. The multiplicative inverse of any real number is
a) the number itself
b) reciprocal of the number
c) zero
d) one
36. The $10^{\text {th }}$ term of the series $2,5,8 \ldots .$. is
a) 16
b) 29
c) 18
d) 10
37. The $13^{\text {th }}$ term of the series $9,6,3, \ldots$. is
a) -10
b) -5
c) -27
d) 27
38. The $6^{\text {th }}$ term of the sequence $3,6,12 \ldots$.is
a) 40
b) 56
c) 85
d) 96
39. If a, b, c are three consecutive terms in a GP, the middle term is
a) $a+c$
b) a x b
c) d) None of these
40. $a^{7} \times a^{3} \times a^{2}=$
a) a^{13}
b) a^{14}
c) a^{12}
d) None of these
41. $27^{2 / 3}$ is
a) 6
b) 3
c) 9
d) None of these
42. 5^{0} is
a) 0
b) 1
c) 5
d) None of these
43. $\log _{a}(\mathrm{mxn})=$
a) $\log _{a} m+\log _{a} n$
b) $\log _{a} \mathrm{mxn}$
c) zero
d) None of these
44. The interest on Rs. 1000 for 5 years at 6% is
a) 150
b) 300
c) 450
d) 600
45., π, are examples of
a) rational numbers
b) irrational numbers
c) counting numbers
d) None of these
45. \qquad is the identity element for multiplication
a) 0
b) 1
c) 100
d) None of these
46. $2,-3,8$ are examples of
a) rational numbers
b) irrational numbers
c) counting numbers
d) None of these
47. Square root of negative numbers are
a) rational numbers
b) irrational numbers
c) complex numbers
d) None of these
48. The product of two rational numbers is
a) rational numbers
b) irrational numbers
c) counting numbers
d) None of these
49. The sum of two odd integers is an
a) even number
b) odd number
c) both a \& b
d) Neither a nor b
50. Every integer is
a) positive
b) negative
c) both a \& b
d) Neither a nor b
51. $\log _{2} 1=0$ is
a) 2^{0}
b) 2^{1}
c) 1^{2}
d) None of these
52. In the function, $y=a+b x$, the dependent variable is
a) y
b) a
c) b
d) x
53. First derivative of the function, $y=2 x^{2}+3 x-4$ is
a) $4 x^{2}+3$
b) $4 x+3$
c) $2 x+3$
d) None of these
54. Derivative of the function, $y=1 / x$ is
a) $1 / x^{2}$
b) $2 / x$
c) $-1 / x^{2}$
d) $-1 / x$
55. Derivative of the function, $\mathrm{y}=$ is:
a) b)
c) 2
d)
56. Derivative of the function $y=\log x$ is
a) $\log x$
b) $1 / x$
c) $-1 / x$
d) 1
57. Derivative of the function $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ is:
a) $1 / x$
b) $1 / e^{x}$
c) e^{x}
d) 0
58. Let $\mathrm{y}=4 \mathrm{x}^{3}-2 \mathrm{x}^{2}+12$, then is
a) $12 x^{2}-4 x$
b) $4 x^{2}-2 x$
c) $2 x-4$
d) None of these
60.The first order condition for maximum is
a) $\mathrm{f}^{\prime}(\mathrm{x}) 0$
b) $\mathrm{f}^{\text {' }}$ (x) 0
c) $f^{\prime}(x)=0$
d) $f^{\prime}(x)=1$
59. Necessary condition for minima is
a) $f^{\prime}(x) 0$
b) f ' $(x) 0$
c) $f^{\prime}(x)=0$
d) $f^{\prime}(x)=1$
60. The second order condition for minimum is
a) f"(x) 0
b) f"(x) 0
c) f " $(\mathrm{x})=0$
d) f " $(x)=1$
61. The second order condition for maximum is
a) f " $(\mathrm{x}) 0$
b) f"(x) 0
c) f " $(x)=0$
d) $f "(x)=1$
62. For the consumption function, $\mathrm{C}=100+0.5 \mathrm{Y}, \mathrm{MPC}$ is :
a) 100
b) 0.5 Y
c) 0.5
d) None of these
63. If the total revenue function is given as $R=3 x^{2}+10 x, M R=$
a) $6 x+10$
b) 10 x
c) $x+10$
d) None of these
64. If $C=20+3 x+5 x^{2}$ is the total cost, marginal cost is :
a) $3+10 x$
b) $20+3 x$
c) $20+5 x$
d) None of these
65. Derivative of a constant is
a) 1
b) 0
c) constant itself
d) None of these
66. If the utility function of a commodity is $U=3 x^{3}-5 x$, then marginal utility is
a) $9 x^{2}-5$
b) $3 x^{2}-10$
c) $3 x^{3}-5$
d) None of these
67. Functional relationship between inputs and output is known as
a) Revenue function
b) Production function
c) Profit function d) None of these
68. Total revenue is a function of
a) price
b) Quantity sold
c) both a \&b
d) None of these
69. Consumption is a function of
a) price
b) Quantity sold
c) disposable income
d) None of these
70. Saving is a function of
a) price
b) Quantity sold
c) disposable income
d) None of these
71. Demand is a function of
a) price
b) Quantity sold
c) disposable income
d) None of these
72. If $y=0.5, d y / d x$ is
a) 1
b) 0
c) constant itself
d) None of these
73. Additive inverse of a negative real number is
a) positive
b) negative
c) both
d) Neither
74. Additive inverse of a positive real number is
a) positive
b) negative
c) both
d) Neither
75. Axiom of commutation states that
a) $a+b=b+a$
b) $a b=b a$
c) both a \& b
d) Neither a nor b
76. If $3 x=6, x=$ \qquad
a) 1
b) 2
c) 3
d) None of these
77. If $5 x^{2}-125=0$, then $x=\ldots \ldots$
a) 1
b) -5
c) 5
d) both $\mathrm{b} \& \mathrm{c}$
78. Supply is a function of
a) price
b) Quantity sold
c) both a \& b
d) None of these
79. The sequence, $16,8,4,2,1$ is \qquad sequence
a) increasing
b) decreasing c) both a \& b
d) Neither a nor b
80. General term of an AP is estimated as
a) $a+d$
b) $a+n d$
c) $a+(n-1) d$
d) None of these
81. Middle term of an AP is the \qquad of the first and third terms
a) product
b) sum
c) arithmetic mean
d) None of these
82. In the progression $1,3,9,27,81$ common ratio is
a) 2
b) 3
c) 9
d) None of these
83. If the first and third terms of a GP are 6 and 96, the middle term is
a) 32
b) 45
c) 24
d) None of these
84. If $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{B}=\{\mathrm{c}, \mathrm{a}, \mathrm{b}\}$, then A and B are
a) Equal sets
b) equivalent sets
c) disjoint sets
d) None of these
85. A set without any element is called
a) Power set
b) null set
c) super set
d) None of these
86. Let $A=\{1,2,3,5\}$ and $B=\{4,5,6,8\}$, then $A \cup B=$
a) $\{1,2,3,6\}$
b) $\{1,2,3,4,5,6,8\}$
c) $\{1,5,6,8\}$
d) None of these
87. If A and B are two disjoint sets, $A \cap B$ is a
a) proper set
b) null set
c) master set
d) None of these
88. A \qquad relation is not a function
a) many to one
b) one to many
c) one to one
d) None of these
89. In the function $y=f(x)$, independent variable is
a) y
b) x
c) both a \& b
d) None of these
90. Normally slope of the demand curve is
a) negative
b) positive
c) 0
d) None of these
91. Slope of the Average fixed cost curve is
a) negative
b) positive
c) 0
d) None of these
92. Set $A=\{0\}$ is
a) a finite set
b) an infinite set
c) a null set
d) None of these
93. Set $\mathrm{a}=\{ \}$ is
a) a finite set
b) an infinite set
c) a null set
d) None of these
94. The sets $A=\{1,2,3,4\}, B=\{a, b, c, d\}$ are
a) infinite sets
b) equal sets
c) joint sets
d) equivalent sets
95. If $A=\{1,2,3\} \quad B=\{2,4,6\}$, then $A U B$ is:
a) $\{2,6\}$
b) $\{1,2,3,4,6\}$
c) $\{3,4,6\}$
d) None of these
96. If $A=\{1,2,3,4\} \quad B=\{3,4,5,6\}$, then $A \cap B$ is:
a) $\{2,6\}$
b) $\{1,2,3,4,6\}$
c) $\{3,4$,
d) None of these
97. The sets $A=\{a, e, i, o, u\}, B=\{a, b, c, d\}$ are
a) equivalent sets
b) equal sets
c) joint sets
d) disjoint sets
98. The sets $U=\{1,2,3,4,5,6\}, A=\{2,4,6$,$\} then$
a) $\mathrm{A}^{\prime}=\{1,2,3,4,5,6\}$
b) $\mathrm{A}^{\prime}=\{1,3,5\}$
c) $\mathrm{A}^{\prime}=\{4,5,6\}$
d) None of these
99. Total number of subsets of a set having m elements is
a) m
b) m^{2}
c) 2^{m}
d) 3^{m}
100. If $A=\{a, b, c\}$ and $B=\{c, d, b\}, C=\{a, b, d, e\}$ then $A \cap(B U C)$ is:
a) $\{a, b, c\}$
b) $\{b, c, d\}$
c) $\{a, b, d, e\}$
d) $\{e\}$
101. Two sets A and B are disjoint if:
a) $\mathrm{A} \cap \mathrm{B}=\mathrm{b}) \mathrm{A} \mathrm{UB}=$
c) $\mathrm{A}-\mathrm{B}=$
d) $\mathrm{B}-\mathrm{A}=$
102. Which of the following is a singleton set
a) $\mathrm{A}=\{2\},, \mathrm{A}=\{1,2\}$
c) $A=\{1,2,3\}, A=\{ \}$
103. The function $\mathrm{Y}=\mathrm{X}$ is :
a) a constant function
b) a quadratic function
c) an identity function
d) None of these
104. The inverse function of $y=2 x$ is
a) $y=x$
b) $x=2 y$
c) $x=0.5 y$
d) $y=x^{2}$
105. A linear function is in the form
a) $y=a+b x+c x^{2}$
b) $y=a+b x$
c) $c=a x^{n}$
d) $y=a^{x}$
106. Which of the following is a quadratic function
a) $y=a+b x+c x^{2}$
b) $y=a+b x$
c) $c=a+b x+c x^{2}+d x^{3}$
d) $y=a^{x}$
107. Indifference curves are related to
a) production
b) consumption
c) income
d) distribution
108. A collection of indifference curves is called
a) indifference set
b) indifference group
c) indifference map
d) None of these
109. The slope of an indifference curve is
a) MRTS
b) MRS
c) price ratio
d) None of these
110. $\mathrm{A}=\{1,2,3,4,5$ \qquad \} is an
a) infinite set
b) finite set
c) unit set
d) singleton set
111. $A=\{1,2,3,4,5\} \quad B=\{1,2,3,4\}$, then
a) B is a proper subset of A
b) A is proper subset of B
c) both a \&b
d) None of these
112. Given $A=\{1,6,8\} \quad B=\{6,1,8\}$, then
a) $A=B$
b) A U B $=$
c) $\mathrm{A}-\mathrm{B}=$
d) $\mathrm{B}-\mathrm{A}=$
113. Two or more sets having exactly the same elements are called
a) finite sets
b) null sest
c) equal sets
d) None of these
114. A set having only one element is called
a) finite set
b) unit set
c) proper set
d) None of these
115. The collection of all the subsets of a set is called
a) finite set
b) power set
c) proper set
d) None of these
116. If two or more sets have exactly the same number of elements, they are called
a) equal sets
b) equivalent sets
c) proper sets
d) None of these
117. If two sets have no elements in common, they are called
a) equal sets
b) equivalent sets
c) disjoint sets
d) None of these
118. If two sets have at least one element in common, they are called
a) equal sets
b) overlapping sets
c) disjoint sets
d) None of these
119. Diagrammatic representation of sets are called
a) Cartograms
b) pictograms
c) Venn diagram
d) None of these
120. If A and B are two sets, $A \cup B$ denotes
a) Union of sets
b) intersection of sets
c) difference of sets
d) None of these
121. If A and B are two sets, $A \cap B$ denotes
a) Union of sets
b) intersection of sets
c) difference of sets
d) None of these
122. If A and B are two sets, $\mathrm{A}-\mathrm{B}$ denotes
a) Union of sets
b) intersection of sets
c) difference of sets
d) None of these
123. If U is the universal set, and A is the subset of U, then A ' is
a) $\mathrm{U}-\mathrm{A}$
b) $\mathrm{A}-\mathrm{U}$
c) $U+A$
d) None of these
124. The set which contains the first component of all the ordered pairs in a Cartesian product is called
a) Range
b) domain
c) image
d) None of these
125. The set which contains the second component of all the ordered pairs in a Cartesian product is called
a) Range
b) domain
c) image
d) None of these
126. A function is called monotone if it is
a) an increasing function
b) a decreasing function
c) both a \& b
d) None of these
127. If a matrix has 5 rows and 6 columns, then order of the matrix is
a) 6 X 5
b) 5×6
c) 5×7
d) None of these
128. A matrix having only one row is called
a) row matrix
b) row vector
c) both a \& b
d) None of these
129. A matrix having only one column is called
a) column matrix
b) column vector
c) both a \& b
d) None of these
130. If all the elements of a matrix are zero, then the matrix is called
a) scalar matrix
b) identity matrix
c) null matrix
d) None of these
131. If the number of rows and columns of a matrix are equal, then the matrix is called
a) scalar matrix
b) identity matrix
c) square matrix
d) None of these
132. If the number of rows and columns of a matrix are not equal, then the matrix is called
a) scalar matrix
b) rectangular matrix
c) square matrix
d) None of these
133. A matrix in which all the elements above or below the leading diagonal are zero is
a) scalar matrix
b) rectangular matrix
c) triangular matrix
d) None of these
134. A diagonal matrix in which all the leading diagonal elements are equal to some constant is
a) scalar matrix
b) rectangular matrix
c) triangular matrix
d) None of these
137.A diagonal matrix in which all the leading diagonal elements are equal to unity is
a) scalar matrix
b) unit matrix
c) triangular matrix
d) None of these
135. Two matrices are said to be equal if
a) they are of same order
b) corresponding elements are equal
c) both a \& b
d) Neither a nor b
136. Transpose of a matrix is obtained by
a) adding rows
b) adding columns
c) interchanging rows and columns
d) None of these
137. A square matrix A is said to be symmetric if
a) $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$
b) $A^{T} \neq A$
c) Neither a) nor b)
138. A square matrix A is said to be skew symmetric if
a) $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$
b) $\quad \mathrm{A}^{\mathrm{T}} \neq \mathrm{A}$
c) $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$
d) None of these
139. The determinant of matrix $A=$ equals
a) 18
b) 2
c) 16
d) None of these
140. A square matrix A is said to be singular if
a) $|\mathrm{A}|=0$
b) $|\mathrm{A}|=1$
c) $|\mathrm{A}| \neq 0$
d) None of these
141. A square matrix A is said to be non-singular if
a) $|\mathrm{A}|=0$
b) $|\mathrm{A}|=1$
c) $|\mathrm{A}| \neq 0$
d) None of these
142. Probability of a sure event is
a) 0
b) 0.5
c) 1
d) -1
143. Probability of an impossible event is
a) 0
b) 0.5
c) 1
d) -1
144. If $\mathrm{P}(\mathrm{A})=0.7, \mathrm{P}\left(\mathrm{A}^{\prime}\right)$ is
a) 0
b) 0.3
c) 1
d) -1
145. If S is the sample space of a random experiment, then
a) $\mathrm{P}(\mathrm{S})=1$
b) $\mathrm{P}(\mathrm{S})=0$
c) $\mathrm{P}(\mathrm{S}) 1$
d) $\mathrm{P}(\mathrm{S}) 1$
146. Probability of getting the score 3 when a dice is thrown:
a) $1 / 3$
b) $1 / 6$
c) $1 / 2$
d) $3 / 4$
147. Probability of an event will always lie between
a) 1 and 2
b) 0 and 1
c) -1 and 1
d) -1 and 0
148. If A and B are equally likely events, then
a) $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})$
b) $P(A) P(B)$
c) $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
d) None of these
149. If two events A and B are mutually exclusive, P (AUB) is
a) $\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
b) $P(A) P(B)$
c) $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
d) None of these
150. If two events A and B are independent, $P(A \cap B)$ is
a) $\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
b) $P(A) P(B)$
c) $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
d) None of these
151. Number of sample points in a simple event is:
a) 3
b) 2
c) 1
d) 0
152. If a coin is tossed 4 times, total number of outcome is:
a) 16
b) 8
c) 4
d) None of these
153. When a dice is thrown two times, total number of sample points is:
a) 6
b) 12
c) 24
d) 36
154. For a binomial distribution with parameters n and p, probability of n successes is:
a) np
b) $n p q$
c) p^{n}
d) q^{n}
155. Arithmetic mean of binomial distribution with parameters n and p is:
a) np
b) npq
c)
d)
156. Variance of binomial distribution with parameters n and p is
a) np
b) $n p q$
c)
d)
157. Parameters of a normal distribution are
a) e and π
b) e and μ
c) μ and
d) μ and π
158. Total area under the normal curve is :
a) 0
b) 0.25
c) 1
d) 0.5
159. In a normal distribution:
a) $\mathrm{AM}=$ Median $=$ Mode
b) AM Median Mode
c) AM Median Mode
d) None of these
160. Skewness of a normal distribution is
a) 0
b) -1
c) 1
d) None of these
161. In a binomial distribution, the probability of success (p) and the probability of failure (q) are related as:
a) $p=q$
b) $p=1+q$
c) $p=1-q$
d) $p=1 / q$
162. Normal curve is :
a) leptokurtic
b) mesokurtic
c) platikurtic
d) None of these
163. For a normal distribution, quartile deviation is:
a) $2 / 3$
b) $3 / 4$
c) $4 / 5$
d) None of these
164. The variance of a standard normal distribution is :
a) 0
b) 2
c) 1
d) None of these
165. If two events cannot occur simultaneously, they are \qquad events.
a) Mutually exclusive
b) equally likely
c) dependent
d) None of these
166. If an event contains more than one sample point, it is a \qquad .event
a) compound
b) equally likely
c) dependent
d) None of these
167. If a dice is thrown, probability of getting an even number is:
a) $1 / 2$
b) 2
c) 1
d) None of these
168. If the probability of two events are same, they are \qquad events.
a) Mutually exclusive
b) equally likely
c) dependent
d) None of these
169. Binomial probability function was introduced by
a) James Bernouli
b) Irving Fisher
c) Horace Secrist
d) None of these
170. Parameters of binomial distribution are:
a) n and p
b) n and q
c) μ
d) π
171. Points of inflection in a normal curve are \qquad
a) b)
c) both a \& b
d) None of these
172. Odd central moments in a normal distribution is equal to
a) 0
b) 2
c) 1
d) None of these
173. The universal set which contains all of the possible outcomes of a random experiment as its elements is called
a) Cartesian product
b) domain
c) sample space
d) None of these
174. Any subset of a sample space which contains one or more sample points is called
a) event
b) element
c) factor
d) None of these
175. ${ }^{8} \mathrm{C}_{2}$ equals
a) 38
b) 28
c) 58
d) None of these
176. From a pack of 52 playing cards one is drawn at random. The probability of getting a black card is:
a) $1 / 56$
b) $2 / 56$
c) $1 / 2$
d) None of these
177. From a class of 45 boys and 15 girls, a name is picked at random. The probability that it is a boy's name is:
a) $1 / 5$
b) $3 / 4$
c) $1 / 2$
d) None of these
178. A uniform dice is thrown at random. The probability that the number on it is greater than 4 is
a) $1 / 6$
b) $1 / 3$
c) $2 / 3$
d) None of these
179. A ball is drawn at random from a box containing 6 red balls, 4 white balls and 5 blue balls. The probability that it is a red ball is
a) 0.3
b) 0.4
c) 0.5
d) None of these
180. A normal curve is \qquad shaped.
a) parabola
b) hyperbola
c) bell
d)) None of these
181. Normal distribution is :
a) unimodal
b) bi- modal
c) both a and b
d)) None of these
182. Mean deviation of a normal distribution is
a) $2 / 3$
b) $3 / 4$
c) $4 / 5$
d) None of these
183. Two parameters of standard normal distribution are
a) $0 \& 1$
b) $2 \& 5$
c) $1 \& 2$
d) None of these
184. $(-32)^{2 / 5}$ equals
a) 4
b) 8
c) 12
d) None of these
185. A demand function is a
a) continuous function
b) constant function
c) increasing function
d) decreasing function
186. If the cost function is given as $C=4 x+500$, then the fixed cost is
a) 4
b) 500
c) 504
d) None of these
187. Equilibrium price of a commodity whose supply and demand are given by $\mathrm{Q}_{s}=-9+\mathrm{p}$ and $Q_{d}=-3-p$ is
a) 9
b) 1
c) 0
d) None of these
188. Equilibrium refers to the state of \qquad
a) demand = supply
b) demand supply
c) demandsupply
d) demand $=0$
189. If $A=\{a, b\}$, its power set has \qquad elements.
a) 2
b) 4
c) 8
d) 1
190. Simultaneous equations means a set of equations in \qquad unknowns.
a) 1
b) 2
c) any number of
d) None of these
191. $\mathrm{X}^{2}-4=0$ implies $\mathrm{X}=$ \qquad
a) 2
b) -2
c) both a and b
d) None of these
192. Set of positive integers is \qquad
a) finite
b) infinite
c) both a and b
d) None of these
193. If A is a square matrix, then,
a) $\left|\mathrm{A}^{\mathrm{T}}\right|=|\mathrm{A}|$
b) $\left|\mathrm{A}^{\mathrm{T}}\right| \neq|\mathrm{A}|$
c) $\left|A^{T}\right||A|$
d) $\left|\mathrm{A}^{\mathrm{T}}\right||\mathrm{A}|$
194. If any two rows or columns of a determinant are identical, then its value is:
a) 0
b) 2
c) 10
d) 1
195. If A and B are two invertible matrices of same order, then:
a) $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
b) $(\mathrm{AB})^{-1} \neq \mathrm{B}^{-1} \mathrm{~A}^{-1}$
c) $(\mathrm{AB})^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}$
d) None of these
196. If $=$, then :
a) $x=7, y=1$
b) $x=10, y=1$
c) $x=5, y=1$
d) None of these
197. Value of the determinant is
a) -19
b) -18
c) 9
d) None of these

QUANTITATIVE TECHNIQUES

ANSWER KEYS

1. b
2. C
3. c
4. c
5. b
6. c
7. d
8. d
9. b
10. b
11. C
12. d
13. a
14. c
15. b
16. c
17. b
18. b
19. c
20. b
21. a
22. c
23. c
24. b
25. c
26. c
27. c
28. a
29.b
29. c
30. c
31. c
32. a
33. b
34. b
35. b
36. c
37. d.
38. c
39. c

41 c
42. b
43. a
44. b
45.b
46. b
47. a
48. c
49. a
50. a
51. d
52. a
53.a
54. b
55. c
56. a
57. b
58. c
59. a
$60 . \mathrm{c}$
61. c
62. b
63. a
64. c
65. a
66. a
67. b
68. a
69. b
70. c
71. c
72. c
73. a
74. b
75. a
76. b
77. c
78. b
79. d
80. a
81. b
82. c
83. c
84. b
85. c
86. a
87. b
88. b
89. b
90. b
91. b
92. a
93. a
94. a
95. c
96.d
97. b
98. C
99. c
100. b
101. c
102. a
103.a
104. a
105. c
106. c
107. b
108. a
109. b
110.c
111. b
112.a
113.a
114. a
115.c
116.b
117. b
118. b
119. c
120.b
121. c
122. a
123.b
124.c
125. a
126. b
127. a
128. c.
129. b
130. c
131. c
132.c
133. c
134. b
135. c
136. a
137. b
138. c
139. c
140. a
141. c
142. c
143. a
144.c
145.c
146. a
147. b
148. a
149. b
150.b
151. a
152. b
153. a
154. c
155.a
156.d
157. c
158.a
159. b
160. c
161. c
162. a
163. a
164. c
165.b
166. a
167. c
168. a
169.a
170.a
171. b
172. a.
173. a
174.c
175. a
176. c
177.a
178. b
179. c
180. b
181. b
182.b
183. c
184. a
185.c
186. a
187.a
188.d
189. b
190.d ans $=6$
191.a
192.b
193. c
194.c
195. b
196. a
197.a
198. a
199. a
200.a

