QUANTITATIVE METHODS - SIXTH SEMESTER

1. The origin of the word Statistics is derived from the Latin term
(a) Status
(b) Statista
(c) Statistik
(d) Statistic
2. Statistics is applied in
(a) Economics
(b) Business Management
(c) Commerce and industry
(d) All these
3. Statistics is concerned with
(a) Qualitative data
(b) Quantitative data
(c) (a) or (b)
(d) Both (a) and (b)
4. An attribute is
(a) A qualitative characteristic
(b) A quantitative characteristic
(c) A measurable characteristic
(d) All these
5. Data collected on religion from the census reports are
(a) Primary data
(b) Secondary data
(c) Sample data
(d) Tertiary data
6. The data collected on the height of a group of students after recording their heights with a measuring tape are
(a) Primary data
(b) Secondary data
(c) Discrete data
(d) Continuous data
7. The primary data are collected by
(a) Interview method
(b) Observation method
(c) Questionnaire method
(d) All these
8. The quickest method to collect primary data is
(a) Personal interview
(b) Indirect interview
(c) Telephone interview
(d) By observation
9. The best method to collect data, in case of a natural calamity is
(a) Personal interview
(b) Direct interview
(c) Indirect interview
(d) All these
10. In case of rail accident, the appropriate method of data collection is by
(a) Personal interview
(b) Direct interview
(c) Indirect interview
(d) All these
11. Which method of data collection covers the widest area?
(a) Telephone interview method
(b) Mailed questionnaire method
(c) Direct interview method
(d) Indirect interview method
12. The amount of non-responses is maximum in
(a) Mailed questionnaire method
(b) Interview method
(c) Observation method
(d) All these
13. Some important sources of secondary are
(a) International and Government sources
(b) International and Primary sources
(c) Private and primary sources
(d) Government sources
14. The mode of presentation of data are
(a) Textual, tabulation and diagrammatic
(b) Tabular, internal and external
(c) Textual, tabular and internal
(d) Tabular, textual and external
15. The best method of presentation of data is
(a) Textual
(b) Tabular
(c) Diagrammatic
(d) (b) and (c)
16. The most attractive method of data presentation is
(a) Tabular
(b) Textual
(c) Diagrammatic
(d) (a) or (b)
17. Diagrammatic representation of data is done by
(a) Diagrams
(b) Charts
(c) Pictures
(d) All the above
18. The most accurate mode of data presentation is
(a) Diagrammatic method
(b) Tabulation
(c) Textual presentation
(d) None of these
19. Vertical bar diagram is applicable when
(a) The data are qualitative
(b) The data are quantitative
(c) When the data vary over time
(d) (a) or (b)
20. Pie-diagram is used for
(a) Comparing different components and their relation to the total
(b) Representing qualitative data in a circle
(c) Representing quantitative data in a circle
(d) (b) or (c)
21. Mode of a distribution is obtained from
(a) Histogram
(b) Frequency polygon
(c) Less than type ogives
(d) More than type ogives
22. Median of a distribution is obtained from
(a) Histogram
(b) Frequency polygon
(c) Less than type ogives
(d) None of these
23. A comparison among the class frequencies is possible only in
(a) Frequency polygon
(b) Histogram
(c) Ogives
(d) (a) or (b)
24. Frequency curve is a limiting form of
(a) Frequency polygon
(b) Histogram
(c) (a) or (b)
(d) (a) and (b)
25. Titles of rows in a table are called
(a) Caption
(b) Body
(c) Stub
(d) Box head
26. Graph is a
(a) Line diagram
(b) Bar diagram
(c) Pie diagram
(d) Pictogram
27. The graphical representation of a cumulative frequency distribution is called
(a) Histogram
(b) Ogive
(c) Both
(d) None of these
28. The most common form of diagrammatic representation of a grouped frequency distribution is
(a) Ogive
(b) Histogram
(c) Frequency polygon
(d) None of these
29. Simple random sampling is very effective if
(a) The population is not very large
(b) The population is not much heterogeneous
(c) The population is partitioned into several sections
(d) Both (a) and (b)
30. Simple random sampling is
(a) A probabilistic sampling
(b) A non-probabilistic sampling
(c) A mixed sampling
(d) Both (b) and (c)
31. Which sampling add flexibility to the sampling process
(a) Simple random sampling
(b) Stratified sampling
(c) Multistage sampling
(d) Systematic sampling
32. Statistical data may be collected by complete enumeration called
(a) Census
(b) Sampling
(c) Both (a) and (b)
(d) None of these
33. As the sample size increases, sampling error
(a) Increases
(b) Decreases
(c) Remains constant
(d) Decreases proportionately
34. The \qquad the size of the sample more reliable is the result
(a) medium
(b) smaller
(c) larger
(d) none
35. Sampling is the process of obtaining a
(a) population
(b) sample
(c) frequency
(d) none
36. The number of samples of size n from a population of N units with out replacement is
(a) n^{2}
(b) nCN
(c) N^{n}
(d) NCn
37. Systematic sampling means
(a) Selection of n contiguous units
(b) Selection of n units situated at equal distances
(c) Selection of n largest units
(d) Selection of n middle units in a sequence
38. When the population is heterogeneous, which sampling method is used
(a) Simple random sampling
(b) Systematic sampling
(c) Stratified sampling
(d) Cluster sampling
39. In Stratified sampling, the sampling is subdivided into several parts, called
(a) strati
(b) strata
(c) start
(d) none
40. \qquad sampling is the most appropriate in cases when the population is more or less homogeneous with respect to the characteristic under study
(a) Stratified
(b) Systematic
(c) Random
(d) Cluster
41. The number of measures of central tendency is
(a) One
(b) Two
(c) Three
(d) Four
42. The words mean or average only refer to
(a) AM
(b) GM
(c) HM
(d) None of these
43. The most stable measure of central tendency is
(a) GM
(b) HM
(c)AM
(d) None
44. Mean is of \qquad types
(a) 2
(b) 3
(c) 4
(d) 5
45. Weighted AM is related to
(a) GM
(b) HM
(c) Frequency
(d) None
46. Frequencies are also called weights
(a) True
(b) False
(c) Both
(d)None
47. The algebraic sum of deviations of observations from their $A M$ is
(a) 2
(b) -1
(c) 1
(d) 0
48. GM of a set of n observations is the \qquad root of their product
(a) $(n / 2)^{\text {th }}$
(b) $(\mathrm{n}+1)^{\mathrm{th}}$
(c) $\mathrm{n}^{\text {th }}$
(d) $(\mathrm{n}-1)^{\mathrm{th}}$
49. GM of $8,4,2$ is
(a) 4
(b) 2
(c) 8
(d) 6
50. \qquad is the reciprocal of the $A M$ of reciprocal of observation
(a)GM
(b) HM
(c) $A M$
(d)None
51. AM is never less than GM
(a) True
(b) False
(c) Both
(d)None
52. The value of the middlemost item when they are arranged in order of magnitude is called
(a) Mean
(b) Median
(c) Mode
(d)Standard deviation
53. Median is unaffected by extreme values
(a) True
(b) False
(c) Both
(d) None
54. Median of $2,5,8,4,9,6,71$ is
(a) 9
(b) 8
(c) 5
(d) 6
55. The value which occurs maximum frequency is called
(a) Median
(b) Mode
(c) Mean
(d) None
56. Mode of the observations $2,5,4,8,4,3,4,5,4,4$ is
(a) 3
(b) 2
(c) 5
(d) 4
57. In formula of median for grouped frequency distribution N is
(a) Frequency
(b) Total frequency
(c) Cumulative frequency
(d) Frequency density
58. When all the observations occur with equal frequency \qquad does not exist.
(a) Mean
(b) Median
(c) Mode
(d) None
59. Simple average is sometimes called
(a) Weighted average
(b) Unweighted average
(c) Relative average
(d) None
60. When a frequency distribution is given, the frequencies themselves treated as weights
(a) True
(b) False
(c) Both
(d) None
61. Relation between mean, median and mode is
(a) Mean - Mode $=2($ Mean-Median $)$
(b) Mean - Median $=3($ Mean - Mode $)$
(c) Mean - Median $=2($ Mean - Mode $)$
(d) Mean - Mode $=3$ (Mean - Median)
62. The number of observation smaller than \qquad is the same as the number of observations is larger than it
(a) Mean
(b) Median
(c) Mode
(d) HM
63. What is the HM of $1,1 / 2,1 / 3, \ldots .1 / n$
(a) n
(b) 2 n
(c) $2 /(n+1)$
(d) $2(n+1)$
64. The presence of extreme observations affect
(a) AM
(b) Median
(c) Mode
(d) Any of them
65. \qquad is useful in averaging ratios, rates and percentages.
(a) AM
(b) GM
(c) HM
(d) None
66. Weighted averages are considered when
(a) The data are not classified
(b) The data are put in the form of frequency table
(c) All the observations are not of equal importance
(d) Both (a) and (b)
67. GM is defined only when
(a) all observations have the same sign and none is zero
(b) all observations have the different sign and none is zero
(c) all observations have the same sign and one is zero
(d) all observations have the different sign and one is zero
68. GM is useful in the construction of index numbers
(a) True
(b) False
(c) Both
(d) None
69. HM is defined when no observation is
(a) 1
(b) 2
(c) 3
(d) 0
70. When all values occur with equal frequency, there is no
(a) Mean
(b) Median
(c) Mode
(d) SD
71. The formula of mode is applicable if classes are of \qquad width
(a) equal
(b) unequal
(c) both (a) and (b)
(d) none
72. When the distribution is symmetrical, mean, median and mode
(a) coincide
(b) do not coincide
(c) both
(d) none
73. \qquad is the value of the variable corresponding to cumulative frequency $\mathrm{N} / 2$
(a) mode
(b) mean
(c) median
(d) none
74. \qquad are used for measuring central tendency and dispersion.
(a) Median
(b) Deciles
(c) Percentiles
(d) Quartiles
75. Less than first quartile, the frequency is equal to
(a) $N / 2$
(b) $N / 4$
(c) $3 N / 4$
(d) None
76. Root-mean square deviation from mean is
(a) Quartile deviation
(b) Standard deviation
(c) Mean deviation
(d) None of these
77. Standard deviation is
(a) Absolute measure
(b) Relative measure
(c) Both
(d)None
78. Coefficient of variation is
(a) Absolute measure
(b) Relative measure
(c) Both
(d)None
79. \qquad deviation is called semi-interquartile range
(a) Percentile
(b) Standard
(c) Quartile
(d) Mean
80. Most useful among the all measures of dispersion is
(a) QD
(b)SD
(c) MD
(d)None
81. For the observations $6,4,1,5,10,4,8$ range is
(a) 9
(b) 10
(c) 8
(d) 6
82. A measure of central tendency tries to estimate the
(a) lower value
(b) upper value
(c) central value
(d) none
83. Mean is influenced by extreme values
(a) True
(b) False
(c) Both
(d) None
84. Mean of $6,7,8,11$ is
(a) 11
(b) 9
(c) 6
(d) 8
85. Calculation of quartiles may be obtained from
(a) Frequency polygon
(b) Histogram
(c) Ogive
(d) Frequency curve
86. Above the upper quartile, the frequency is eqaual to
(a) $N / 4$
(b) $3 \mathrm{~N} / 4$
(c) $\mathrm{N} / 2$
(d) N
87. The values which divide the total number of observations into 4 equal parts are
(a) Percentiles
(b) Deciles
(c) Quartiles
(d) None
88. The second quartile is known as
(a) Lower quartile
(b) Upper quartile
(c) Median
(d) None
89. Graphical method for measuring dispersion is
(a) Ogive
(b) Lorenz curve
(c) Frequency curve
(d) Histogram
90. If all the observations are multiplied by 6 then
(a) SD would be also multiplied by 6
(b) SD would be $1 / 6^{\text {th }}$ of the previous $S D$
(c) SD would be decreased by 6
(d) SD would be increased by 6
91. When all the values are equal the SD would be
(a) 1
(b) -1
(c) 0
(d) 2
92. As the sample size increases, range also tends to
(a) Decrease
(b) Increase
(c) Same
(d)None
93. The value of SD does not depend upon the choice of the origin
(a)True
(b)False
(c)Both
(d)None
94. Deviation may be positive, negative or zero
(a)True
(b)False
(c)Both
(d)None
95. \qquad has a limited use
(a) AM
(b) GM
(c) HM
(d) Median
96. Lower quartile is
(a) First quartile
(b) Second quartile
(c) Third quartile
(d) Upper quartile
97. Corresponding to first quartile, the cumulative frequency is
(a) $\mathrm{N} / 2$
(b) $N / 4$
(c) $3 \mathrm{~N} / 4$
(d) $\mathrm{N} / 3$
98. Corresponding to second quartile, the cumulative frequency is
(a) $\mathrm{N} / 2$
(b) $2 N / 4$
(c) $3 N / 4$
(d)N/4
99. Corresponding to third quartile, the cumulative frequency is
(a) $\mathrm{N} / 2$
(b) $N / 4$
(c) $3 \mathrm{~N} / 4$
(d) $N / 3$
100. GM of $1,3,9,0$ is
(a) 3
(b) 2
(c) 0
(d) 1
101. Bivariate data are the data collected for
(a) Two variables
(b) More than two variables
(c) Two variables at the same point of time
(d) Two variables at different points of time
102. For a bivariate frequency table having $(p+q)$ classification the total number of cells is
(a) p
(b) q
(c) pq
(d) $p+q$
103. Correlation analysis aims at
(a) Predicting one variable for a given value of the other variable
(b) Establishing relation between two variables
(c) Measuring the extent of relation between two variables
(d) Both (b) and (c)
104. Regression analysis is concerned with
(a) Establishing a mathematical relationship between two variables
(b) Measuring the extent of association between two variables
(c) Predicting the value of the dependent variable for a given value of the independent variable
(d) Both (a) and (c)
105. Scatter diagram is considered for measuring
(a) Linear relationship between two variables
(b) Curvilinear relationship between two variables
(c) Both (a) and (b)
(d) Neither (a) nor (b)
106. If the plotted points in a scatter diagram lie from upper left to lower right, then the correlation is
(a) Positive
(b) Negative
(c) Zero
(d) None of these
107. If the plotted points in a scatter diagram are evenly distributed, then the correlation is
(a) Zero
(b) Negative
(c) Positive
(d) (a) or (b)
108. If all the plotted points in a scatter diagram lie on a single line, then the correlation is
(a) Perfect positive
(b) Perfect negative
(c) Both (a) and (b)
(d) Either (a) or (b)
109. The correlation between shoe-size and intelligence is
(a) Positive
(b) Negative
(c) Zero
(d) None of these
110. Scatter diagram helps us to
(a) Find the nature correlation between two variables
(b) Compute the extent of correlation between two variables
(c) Obtain the mathematical relationship between two variables
(d) Both (a) and (c)
111. Pearson's correlation coefficient is used for finding
(a) Correlation for any type of relation
(b) Correlation for linear relation only
(c) Correlation for curvilinear relation only
(d) Both (b) and (c)
112. If the value of correlation coefficient is positive, then the points in a scatter diagram tend to cluster
(a) From lower left corner to upper right corner
(b) From lower left corner to upper left corner
(c) From lower right corner to upper left corner
(d) From lower right corner to upper right corner
113. When $r=1$, all the points in a scatter diagram would lie
(a) On a straight line directed from lower left to upper right
(b) On a straight line
(c) On a straight line directed from upper left corner to lower right
(d) Both (a) and (b)
114. Product moment correlation coefficient may be defined as the ratio of
(a) The product of SD's of the two variables to the covariance between them
(b) The covariance between the variables to the product of the variances of them
(c) The covariance between the variables to the product of their standard deviations
(d) Either (b) or (c)
115. The covariance between two variables is
(a) Strictly positive
(b) Strictly negative
(c) Always zero
(d) Either positive or negative or zero
116. The coefficient of correlation between two variables
(a) Can have any unit
(b) Is expressed as the product of units of the two variables
(c) Is a unit free measure
(d) None of these
117. What are the limits of the correlation coefficient?
(a) No limit
(b) 0 and 1 , including the limits
(c) -1 and 1
(d) -1 and 1 , including the limits
118. For finding correlation coefficient between two attributes, we consider
(a) Scatter diagram
(b) Spearman's rank correlation coefficient
(c) Pearson's correlation coefficient
(d) Coefficient of concurrent deviations
119. For finding the degree of agreement about beauty between two judges in a beauty contest, we use
(a) Coefficient of correlation
(b) Coefficient of rank correlation
(c) Coefficient of concurrent deviations
(d) Scatter diagram
120. If there is a perfect disagreement between the marks in History and Statistics, then what would be the value of rank correlation coefficient?
(a) Any value
(b) Only 1
(c) Only -1
(d) (b) or (c)
121. If there are two variables x and y, then the number of regression equation could be
(a) 1
(b) 2
(c) 3
(d) Any number
122. Since blood pressure of a person depends on age, we need consider
(a) The regression equation of age on blood pressure
(b) The regression equation of blood pressure on age
(c) Both (a) or (b)
(d) Either (a) or (b)
123. The method applied for deriving the regression equations is known as
(a) Least squares
(b) Concurrent deviations
(c) Product moment
(d) Normal equation
124. The difference between the observed value and estimated value in regression analysis is known as
(a) Error
(b) Residue
(c) Deviation
(d) (a) or (b)
125. The errors in case of regression equation are
(a) Positive
(b) Negative
(c) Zero
(d) All these
126. The regression line of y on x is derived by
(a) The minimisation of vertical distances in the scatter diagram
(b) The minimisation of horizontal distances in the scatter diagram
(c) Both (a) and (b)
(d) (a) or (b)
127. The two lines of regression become identical when
(a) $r=1$
(b) $r=-1$
(c) $r=0$
(d) (a) or (b)
128. What are the limits of the two regression coefficients
(a) No limit
(b) Must be positive
(c) One positive and other negative
(d) Product of the regression coefficient must be numerically less than unity
129. The regression coefficients remain unchanged due to a
(a) Shift of origin
(b) Shift of scale
(c) Both (a) and (b)
(d) (a) or (b)
130. The correlation between the speed of an automobile and the distance travelled by it after applying the brake is
(a) Negative
(b) Positive
(c) Zero
(d) None
131. \qquad is concerned with the measurement of the "strength of association" between variables
(a) Correlation
(b) Regression
(c) Both
(d)None
132. \qquad gives the mathematical relationship of the variables
(a) Correlation
(b) Regression
(c) Both
(d)None
133. Correlation coefficient between two variables is a measure of their linear relationship
(a) True
(b) False
(c) Both
(d) None
134. Correlation coefficient is a pure number
(a) True
(b) False
(c) Both
(d) None
135. Correlation coefficient is \qquad of the units of measurement
(a) dependent
(b) independent
(c) both (a) and (b)
(d) (a) or (b)
136. The value of correlation lies between
(a) -1 and 0
(b) -1 and 1
(c) 0 and 1
(d) none of these
137. Covariance measures \qquad variations of two variables
(a) joint
(b) single
(c) both
(d) none
138. In rank correlation coefficient the association need not be linear
(a) True
(b) False
(c) Both
(d) None
139. The sum of the difference of rank is
(a) 1
(b) -1
(c) 0
(d) none
140. Karl Pearson's coefficient is defined from
(a) ungrouped data
(b) grouped data
(c) both
(d) none
141. Demand for goods and their prices under normal times, correlation is
(a) positive
(b) negative
(c) zero
(d) none
142. \qquad is a relative measure of association between two or more variables
(a) Coefficient of correlation
(b) Coefficient of regression
(c) Both
(d) None
143. The line $X=a+b Y$ represents the regression equation of
(a) Y on X
(b) X on Y
(c) Both
(d) None
144. Two regression lines always intersect at the means
(a) True
(b) False
(c) Both
(d) None
145. The regression coefficient is zero if r is equal to
(a) 1
(b) -1
(c) 0
(d) -1 or 1
146. The regression lines are identical if r is equal to
(a) 1
(b) -1
(c) 0
(d) -1 or 1
147. The regression lines are perpendicular to each other if r is equal to
(a) 1
(b) 0
(c) -1
(d) 0 or 1
148. Simple correlation is called
(a) linear correlation
(b) nonlinear correlation
(c) both
(d) none
149. The more scattered the points are around a straight line in a scatter diagram the \qquad is the correlation coefficient
(a) zero
(b) more
(c) less
(d) none
150. If the values of y are not affected by changes in the values of x, then the variables are said to be
(a) correlated
(b) uncorrelated
(c) both
(d) none
151. Variance may be positive, negative or zero
(a) True
(b) False
(c) Both
(d) None
152. Covariance may be positive, negative or zero
(a) True
(b) False
(c) Both
(d) None
153. When $r=0$ then $\operatorname{cov}(x, y)$ is equal to
(a) 1
(b) -1
(c) 0
(d) none
154. $b_{x y}$ is called regression coefficient of
(a) x on y
(b) y on x
(c) both
(d) none
155. The slopes of the regression line of y on x is
(a) $b_{x y}$
(b) $b_{y x}$
(c) $1 / b_{x y}$
(d) $1 / b_{y x}$
156. Correlation coefficient r lies between the regression coefficients $b_{x y}$ and $b_{y x}$
(a) True
(b) False
(c) Both
(d) None
157. The correlation coefficient r is the \qquad of the two regression coefficients $b_{x y}$ and $b_{y x}$
(a) AM
(b) GM
(c) HM
(d) None
158. Maximum value of rank correlation coefficient is
(a) 1
(b) -1
(c) 0
(d) none
159. If $b_{x y}$ and $b_{y x}$ are negative, correlation coefficient r is
(a) positive
(b) negative
(c) zero
(d) none
160. In case 'sale of cold drinks and day temperature', correlation is
(a) positive
(b) negative
(c) zero
(d) none
161. A series of numerical figures which show the relative position is called
(a) Relative number
(b) Index number
(c) Absolute number
(d) None
162. Index number for the base period is always taken as
(a) 200
(b) 50
(c) 100
(d) 1
163. \qquad plays a very important part in the construction of index numbers
(a) Classes
(b) Weights
(c) Estimations
(d) None
164. \qquad is particularly suitable for the construction of index numbers
(a) AM
(b) GM
(c) HM
(d)None
165. Index numbers show \qquad changes rather than absolute amounts of change.
(a) relative
(b) percentage
(c) both
(d) none
166. The \qquad makes index numbers time reversible
(a) AM
(b) GM
(c) HM
(d) None
167. Price relative is equal to
(a)
(b)
(c) $p_{1} * 100$
(d) $p_{0} * 100$
168. Index number is equal to
(a) sum of price relatives
(b) average of the price relatives
(c) product of price relatives
(d) none
169. The \qquad of group indices given the general index
(a) GM
(b) HM
(c) $A M$
(d) None
170. Factor reversal test is one of the test of
(a) hypothesis
(b) index numbers
(c) both
(d) none
171. Weighted GM of relative formula satisfy \qquad test
(a) Time reversal test
(b) Factor reversal test
(c) Circular test
(d) Unit test
172. Factor reversal test is satisfied by
(a) Laspeyre's index
(b) Paasche's index
(c) Fisher's ideal index
(d) None of these
173. Laspeyre's formula does not satisfy
(a) Time reversal test
(b) Factor reversal test
(c) Circular test
(d) All the above
174. A ratio or an average of ratios expressed as a percentage is called
(a) a relative number
(b) an absolute number
(c) an index number
(d) none of these
175. The value at the base time period serves as the standard point of comparison
(a) True
(b) False
(c) Both
(d) None
176. An index time series is a list of \qquad numbers for two or more periods of time
(a) index
(b) class
(c) sample
(d) none
177. Index numbers are often constructed from the
(a) frequency
(b) class
(c) sample
(d) population
178. \qquad is a point of reference in comparing various data describing individual behaviour
(a) Sample
(b) Base period
(c) Estimation
(d) None
179. P_{01} is the index for time
(a) 0 on 1
(b) 1 on 1
(c) 1 on 0
(d) 0 on 0
180. The ratio of price of single commodity in a given period to its price in the preceding period is called the
(a) price ratio
(b) base period
(c) relative price
(d) none
181. P_{10} is the index for time
(a) 0 on 1
(b) 1 on 1
(c) 1 on 0
(d) 0 on 0
182. Laspeyre's and Paasche's method do not satisfy
(a) Unit test
(b) Time reversal test
(c) Factor reversal test
(d) Both (b) and (c)
183. The index number is a special type of average
(a) True
(b) False
(c) Both
(d) None
184. The choice of suitable base period is at best temporary solution
(a) True
(b) False
(c) Both
(d) None
185. The purpose determines the type of index number to use
(a) No
(b) Yes
(c) May be
(d) May not be
186. There is no such thing as unweighted index numbers
(a) True
(b) False
(c) Both
(d) None
187. We use price index numbers to
(a) measure prices
(b) compare prices
(c) measure and compare prices
(d) none
188. Simple aggregate of quantities is a type of
(a) Quantity control
(b) Quantity indices
(c) Both
(d) None
189. Factor reversal test according to Fisher is $\mathrm{P}_{01} * \mathrm{Q}_{01}=$
(a)
(b)
(c)
(d) None of these
190. Time reversal test is represented symbolically is
(a) $\mathrm{P}_{01} * \mathrm{P}_{10}=1$
(b) $\mathrm{P}_{01}{ }^{*} \mathrm{Q}_{01}=1$
(c) $\mathrm{P}_{01} * \mathrm{Q}_{10}=1$
(d) None of these
191. Purchasing power of money is
(a) Equal to price index number
(b) Reciprocal of price index number
(c) Unequal to price index number
(d) Reciprocal of quantity index
192. Cost of living index numbers are also used to find real wages by the process of
(a) Base shifting
(b) Splicing of index number
(c) Deflating of index number
(d) None of these
193. Which index measures the changes in the price of goods in the stages before the retail level
(a) Consumer price index
(b) Wholesale price index
(c) Both
(d) None
194. Paasche's index number is expressed in terms of
(a) $* 100$
(b) $* 100$
(c) ${ }^{*} 100$
(d) None of these
195. Laspeyre's index number is expressed in terms of
(a)*100
(b) $* 100$
(c) ${ }^{*} 100$
(d) None of these
196. Paasche' index is based on
(a) Base year quantities
(b) Current year quantities
(c) Average of current and base year
(d) None of these
197. Laspeyre's index is based on
(a) Base year quantities
(b) Current year quantities
(c) Average of current and base year
(d) None of these
198. Fisher's ideal index is
(a) The median of Laspeyre's and Paasche's index number
(b) The AM of Laspeyre's and Paasche's index number
(c) The GM of Laspeyre's and Paasche's index number
(d) The HM of Laspeyre's and Paasche's index number
199. Cost of living index number is expressed as same as
(a) Laspeyre's index number
(b) Paasche's index number
(c) Fisher's ideal index number
(d) None of these
200. Neither Laspeyre's formula nor Paasche's formula which satisfies
(a) Time reversal test
(b) Factor reversal test
(c) Both (a) and (b)
(d) Unit test

Quantitative Methods

ANSWERS

- a
- d
- d
- a
- b
- a
- d
- c
- a
- c
- b
- a
- a
- a
- b
- c
- d
- b
- b
- a
- a
- C
- b
- d
- C
- a
- b
- b
- b
- a
- d
- a
- b
- C
- b
- d
- b
- C
- b
- C
- C
- a
- C
- b
- C
- a
- d
- c
- a
- b
- a
- b
- a
- d
- b
- d
- b
- c
- b
- a
- d
- b
- c
- a
- b
- c
- a
- a
- d
- c
- c
- a
- C
- d
- b
- b
- a
- b
- C
- b
- a
- c
- a
- d
- c
- a
- C
- C
- b
- a
- C
- b
- a
- a
- c
- a
- b
- b
- C
- C
- C
- C
- d
- d
- c
- b
- a
- d
- c
- a
- b
- a
- a
- C
- d
- C
- d
- b
- b
- c
- b
- b
- a
- d
- d
- a
- d
- d
- a
- a
- a
- b
- a
- a
- b
- b
- a
- a
- c
- b
- b
- a
- b
- a
- c
- d
- b
- a
- c
- b
- b
- a
- C
- a
- b
- a
- b
- a
- b
- a
- b
- C
- b
- b
- b
- b
- a
- b
- C
- b
- a
- C
- d
- C
- a
- a
- C
- b
- C
- C
- a
- d
- a
- a
- b
- b
- c
- b
- b
- a
- b
- C
- b
- b
- C
- b
- a
- C
- a
- C

