BSc. Mathematics Degree (MGU-CBCSS-UG) Examination
 (Model Question)
 MM2CRT02 II Semester BSc Mathematics (Core) Model I

2017 admissions onwards

Part A Each Question Carries 2 marks. Answer Any 10 Questions

1. Find the condition that the line $y=m x+c$ is a tangent to the parabola $y^{2}=4 a x$
2. Define Director circle and auxiliary circle of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
3. What is the equation of the chord joining two points t_{1} and t_{2} of the parabola $y^{2}=4 a x$
4. Find the polar of the point $\left(x_{1}, y_{1}\right)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
5. Derive the polar equation of a circle with pole at the circumference and diameter as the initial line
6. Find the eccentricity and the semi latus rectum of the $\operatorname{conic} \frac{10}{r}=3 \cos \theta+4 \sin \theta+5$
7. Define the Hyperbolic functions $\sinh x$ and $\cosh x$
8. Show that $\sinh (x-y)=\sinh x$ coshy $-\cosh x$ sinhy
9. Prove that $\log (-1)=i \pi$
10. If $x=\log s$ and $y=s^{2}-1$ find $\frac{d^{2} y}{d x^{2}}$
11. If $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$, find $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{2}$
12. Determine $\lim _{x \rightarrow 0} \frac{\sinh x-x}{\sin x-x \cos x}$

Part B Each Question Carries 5 marks. Answer Any 6 Questions

13. Find the equation of the tangents drawn to the ellipse $9 x^{2}+16 y^{2}=144$ from the point $(2,3)$
14. Find the equation of the chord joining any two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
15. Find the equation of a tangent at any point on the circle $r=2 a \cos \theta$
16. If $\tan \frac{\theta}{2}=\tanh \frac{u}{2}$ prove that $u=\log \tan \left[\frac{\pi}{4}+\frac{\theta}{2}\right]$
17. Sum the series $\cos \alpha \cos \alpha+\cos ^{2} \alpha+\cos ^{3} \alpha \cos 3 \alpha+\cdots \ldots$.
18. Resolve into real factors $x^{10}+1$
19. Find the $\mathrm{n}^{\text {th }}$ derivative of $\frac{x+1}{6 x^{2}-7 x+3}$
20. If $y=\left[\log \left(x+\sqrt{1+x^{2}}\right)\right]^{2}$, prove that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}-n^{2} y_{n}=0$
21. Determine $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$

Part C Each Question Carries 15 marks. Answer Any 2 Questions

22. A. A common tangent is drawn to the circle $x^{2}+y^{2}=c^{2}$ and the parabola $y^{2}=4 a x$.Show that the angle θ which makes with the x axis is given by $\tan ^{2} \theta=\frac{-c+\sqrt{c^{2}+4 a^{2}}}{2 c}$
B. Find the equation of the tangents drawn to the ellipse $9 x^{2}+16 y^{2}=144$ from the point $(2,3)$
23. A. Show that the semi latus rectum is the harmonic mean between the segments of any focal chord
B. Prove that the tangents at the extremities of any focal chord of a conic intersects on the corresponding directrix
24. A. Resolve into real factors $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$
B. Sum the series $1-\frac{1}{2} \cos \theta+\frac{1.3}{2.4} \cos 2 \theta-\frac{1.3 .5}{2.4 .6} \cos 3 \theta+\cdots$
25. A. If $y^{1 / m}+y^{-1 / m}=2 x$, prove that $\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$
B. Find $\lim _{x \rightarrow 1}\left(\left(1-x^{2}\right)\right)^{\frac{1}{\log (1-x)}}$
