New Page 1

#### semester - I Semester - II Semester - III Semester - IV

**Complementary - Electronics for Physics** 

### Semester I

### EC1C01 Basic Electronics

### **Aims and Objectives**

Electronic systems are built with components like resistance, capacitance, diodes, transistors, etc. The intention of the course is to create awareness about the principle and working of the commonly used components in electronic systems. Upon completion of the course the student is expected to be able to identify, use and check various electronic components.

No. of contact hours : 36 Credits: 2

### Module I

#### Introduction to circuit components

Resistor & General information such as symbols, colour codes, types, variable resistors, potentiometers, thermistors, LDRs, VDRs, technical specifications like voltage rating.- Capacitors & General information such as symbols, colour codes, types, fixed and variable Capacitors- Specifications, Voltage Rating 🚸 Inductors symbols, types, such as air core, iron core, chocking core, frequency response relays  $\diamond$ symbols types  $\diamond$  application area- Microphone & Speaker  $\diamond$  Frequency response, Impedance, rating, size, transducers.

### Ref: Basic Electronics & Theraja

#### **Semiconductor Diode Devices**

Semiconductors- Energy bands in semiconductors • Intrinsic and Extrinsic semiconductors- P type and N type semiconductors • Majority and minority carriers- PN junction • Properties of PN Junction • Biasing-V-I Characteristics of PN Junction-Semiconductor Diode-Zener Diode & Zener diode as voltage regulator.

### Ref: Principles of Electronics. V. K Mehta & Rohit Mehtha

#### Module II

### Applications of Semi Conductor Diodes

Half Wave Rectifier- Full Wave Rectifier � Bridge Rectifier (Efficiency and Ripple Factor with derivation) -Filter Circuits- Advantages and use of filters-Shunt capacitor filter, LC filter, RC filter Clipper, Clamper. Ref: Principles of Electronics. V. K Mehta & Rohit Mehtha

#### **Special diodes**

LED&s- Multi colour LED & Applications of LED & Schottky diode & Tunnel diode-Photo Diode & Solar cell Varactor Diode Principle of operation and Characteristics.

### Ref: Electronic Principles, Malvino

Module III **Network Analysis** 

(6 hrs)

(6hrs)

(6 hrs)

(6hrs)

(6 hrs)

New Page 1

Thevenings theorem, Nortongs theorem, Super position theorem, Maximum Power transfer theorem. Voltage Source, Current source.

### Ref: Network Theory and Filter Design- Aatre.

#### Transistors

(6 hrs) Transistor: PNP and NPN transistors- Different configurations- CE, CB, CC- amplifying action- Current gaina,  $\beta$  and their relation  $\diamond$  transistor characteristics in the three configurations  $\diamond$  BJT factors contributing to Thermal Stability- stability factor S- Operating Point 🛛 Voltage divider Bias 🚱 Base resistor feed back 🚱 Potential divider Bias.

### Ref: Principles of Electronics. V. K Mehta & Rohit Mehtha.

### Practical I **List of Experiments**

#### No. of contact hours : 36 Credits : 1

- 1. CRO familiarization- measurement of ac voltage, dc voltage- measurement of frequency.
- PN junction diode characteristics.
- Zener diode characteristics.
- 4. Half wave rectifier
- 5. Full wave rectifier with and without filter.
- 6. Series voltage regulator using Zener.
- 7. Regulated Power Supply using IC.
- 8. Clippers positive, negative, biased.
- 9. Clampers- positive, negative.

### <u>Semester II</u>

### EC2C02 Amplifiers, Oscillators and Power Electronics

#### **Aims and Objectives**

This course intends to impart to the student basic knowledge of the various types of amplifiers, oscillators and also basic ideas of power electronics. On completion the student is expected to be familiar with the design aspects of amplifiers.

No. of contact hours : 36 No. of Credits: 2

### Module I

### **Transistor Amplifier**

### (12 hrs)

Amplifier classification based on operating point, frequency, coupling element Single stage CE amplifier with voltage divider bias & AC analysis- DC analysis- gain in decibels & voltage gain & current gain- input impedance- output impedance <br/>
power gain.

### Ref: Principles of Electronics. V. K Mehta & Rohit Mehtha

#### Module II **Feedback Amplifiers**

### Principles of feed back circuit & Stabilization of gain by negative feed back- Reduction of non-linear distortion by negative feed back- Effect of feed back on input and output resistances & Voltage series feed back Emitter follower Current series feed back.

# Ref: Principles of Electronics. V. K Mehta & Rohit Mehtha

### Oscillators

### (6hrs) Feed back requirements of Oscillators @Barkhausen criteria for Oscillations Basic Oscillator Analysis @ Phase Shift Oscillator & Hartley Oscillator & Collpits Oscillator, Piezo-electric Crystal Oscillator.

# Ref: Principles of Electronics. V. K Mehta & Rohit Mehtha [Chapter 17]

# Module III

**Field Effect transistors** JFET- Principle and Working- JFET as Amplifier-operating point 🗞 FET biasing- fixed bias 🍖 self biasvoltage divider bias- Applications.

# Ref: Principles of Electronics. V. K Mehta & Rohit Mehtha [Chapter 22]

TRIAC • construction-operation-characteristics-DIAC-UJT- UJT- characteristics.

# Ref: Principles of Electronics. V. K Mehta & Rohit Mehtha [Chapter 24]

Practical II List of Experiments

No. of contact hours : 36 No. of Credits : 1

**Power Electronics** 

- 1. RC integrator.
- RC differentiator.
- Common Base characteristics.
- Single stage CE amplifier.
- Hartley oscillator.
- 6. Colpitts oscillator.
- 7. JFET characteristics.
- 8. Emitter follower
- Photodiode characteristics

# Semester III

# EC3C03\_ Operational amplifiers, Integrated circuits and Communication electronics

New Page 1

(6 hrs)

(6hrs)

(6hrs)

21/04/2018

- **Aims and Objectives** 
  - The advent of integrated circuit technology is the cause of all modern developments in electronic industry. The objective of the course is to introduce the techniques of IC fabrication, discuss the basic principle of working of operational amplifier. The course also aims to provide rudimentary ideas of electronic communication.

No. of contact hours : 54 No. of Credits: 2

### Module I

**OP** amp theory

Basic concepts &Schematic diagram of 741-Ideal Operational amplifier- Practical inverting OP-AMP-Practical non-inverting OP-AMP - DC analysis- Ac Analysis- The differential amplifiers- OP- Amp Parameters- Input bias current- Input offset current-Input offset voltage-Input Common mode Range-Power Supply Voltage rejection Ratio-Output Voltage Swing(Range)- Slew rate- Full Power Band Width- -Applications of OPAMP-adder Circuit - Integrator 🗞 Differentiator- voltage comparator.

### **Ref: Integrated Electronics Millman & Halkias**

### Module II

# **Integrated Circuits**

IC classification- monolithic IC techniques- Planar process- Bipolar transistor fabrications- Monolithic diodes- Resistors-Capacitors- IC Packaging- Preparation of thin films.

# Ref: Micro Electronics Millman & Grabel.

### Module III

### **Communication Electronics**

(18 hrs) Principles of A.M. • Side band frequencies of A M wave-Power in AM wave-Transistor A.M modulator-Frequency modulation (Qualitative study only)-Essentials of demodulation of AM wave. A.M. Radio receiver-Super heterodyne receivers- Pulse modulation-PAM, PTM, PCM, PPM. (Basic ideas) T.V. fundamentals-Block diagram of monochrome T.V. transmitter and receiver-Scanning-Aspect ratio-Basic ideas of LCDTV-Plasma TV & HDTV

# Ref: Electronic communication systems-George Kennedy & Bernard Davis

Practical III List of Experiments

No. of contact hours : 36 Credits: 1

- 1. OP- AMP- inverting amplifier.
- Non-inverting amplifier using OP- AMP
- 3. OP- AMP comparator, buffer.
- 4. OP- AMP- integrator.
- 5. OP- AMP- differentiator.
- 6. OP-AMP-Square Wave generator using OP-AMP
- 7. Amplitude Modulation
- 8. Demodulation
- 9. PCB Fabrication

### Semester IV

# **EC3C03 Digital Electronics**

#### 4/7

(18 hrs)

(18 hrs)

New Page 1

# Aims and Objectives

Computers and many other sophisticated electronic devices are working on Digital electronic principles. The aim of the course is to impart sufficient knowledge of these principles. The course also aims to provide basic ideas of memory devices.

No. of contact hours : 54 No. of Credits : 2

#### Module I

#### Number Systems

Number Systems-Decimal-binary &I-Hexadecimal-BCD-conversion between different systems- Binary Arithmetic

### Boolean Algebra and Minimization techniques

Boolean Logical operations-AND-OR-NOT-Basic laws & Property of Boolean Algebra-Principle of Duality Demorgans Theorems- Sum of Product(SOP) and Product of sum(POS)-Minterm-Maxterm-Deriving SOP and POS from Truth Table-Karnaugh Map-simplification of a Boolean expression four-variable K-map

# Ref:Digital Circuits and Design S Salivahanan and S Arivazhagan [ Ch I&2]

# Logic Gates

Review of AND, OR, NOT, XOR, NAND, NOR gates and their Truth Table. TTL and CMOS gates. Adders-Half Adder- Full Adder- 4 bit Adder- Subtraction circuits-Encoders- Decoders

# **Ref: Integrated Electronics Millman & Halkias**

#### Module II Flip Flops

Flip Flops(18 hrs)Types of Flip Flops(FF)- S-R FF-[ NOR and NAND based ] Clocked S-R FF- D FF J-K FF T T FF Master-<br/>Slave FF- Race around condition- Applications of FF- Shift registers-Serial in Serial out Parallel in Parallel<br/>out- Serial-in-parallel out-parallel in serial out- Counters- Ripple counter- Ring counter- Synchronous<br/>Counters- Synchronous Up/down Counter Design of Mod-10(decade) counter. D/A Converters-Weighted<br/>resistor type D/A Converter- R-2R Converters- A/D Converter Counter A/D Converter.

### Ref: Integrated Circuits Millman & Hallkias

### Module III Memory Devices

No. of contact hours : 36

Credits: 1

Memory Devices-Magnetic tapes-Hard disc-Floppy disc-C.D. **&**Rewritable C.D.-D.V.D. - Bubble memory-Memory card-Memory button - Pen drive Classification of Memories- Registers-RAM-SRAM-DRAM-ROM-PROM-EPROM-EEPROM-

# *Ref: Microprocessor architecture, programming and applications with the 8085- Ramesh Gaonkar*

Practical IV List of Experiments

New Page 1

(5 hrs)

(7hrs)

(6hrs)

[18 hrs]

- 1. Verification of Truth table of Logic gates using IC.
- 2. Verification of De-Morgan s laws using IC.
- 3. Verification of truth table of JK flip- flop.
- 4. Shift register using IC.
- 5. Ripple counter using IC.
- 6. Ring counter using IC.
- 7. Decade counter using IC.
- 8. A/D Converter
- 9. D/A Converter

### **Complementary Course**

### **Electronics for Physics**

### Scheme

| Semester | Title of the paper                                                                                            | Number<br>of<br>hours<br>per | Number<br>of<br>credits | Total<br>Credits | Total<br>hours/<br>semester | University<br>Exam<br>Duration | Weightage |    |
|----------|---------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|------------------|-----------------------------|--------------------------------|-----------|----|
|          |                                                                                                               | week                         |                         |                  |                             |                                | IA        | EA |
| 1        | EC1C01 Basic<br>Electronics                                                                                   | 2                            | 2                       | 3                | 72                          | 3 hrs                          | 1         | 3  |
|          | Practical I                                                                                                   | 2                            | 1                       |                  |                             |                                |           |    |
| 2        | EC2C02 Amplifiers,<br>Oscillators and<br>Power Electronics                                                    | 2                            | 2                       | 3                | 72                          | 3                              | 1         | 3  |
|          | Practical II                                                                                                  | 2                            | 1                       |                  |                             |                                |           |    |
| 3        | EC3C03<br>Operational<br>amplifiers,<br>Integrated circuits,<br>Communication<br>electronics<br>Practical III | 3                            | 3                       | 4                | 90                          | 3                              | 1         | 3  |
| 4        | EC4C04 Digital<br>Electronics                                                                                 | 3                            | 3                       | 4                | 90                          | 3                              | 1         | 3  |
|          | Practical IV                                                                                                  | 2                            | 1                       |                  |                             |                                |           |    |

21/04/2018

New Page 1