Model Question Paper

Third Semester M.Sc Degree Examination (CSS)

ST3C13 - DESIGN AND ANALYSIS OF EXPERIMENTS

Time: 3 hours
Total Weights: 30

Part A
 (Answer any five questions. Weightage 1 for each question.)

1. Explain the concepts (i) Linear model and (ii) BLUE.
2. What do you mean by Gauss-Markoff setup.
3. Explain CRD.
4. Define Graceo latin square design.
5. Explain (i) Incidence matrix and (ii) C matrix in connection with a BIBD.
6. Define PBIBD with m associate classes.
7. What do you mean by asymmetrical factorial experiments?
8. What is E-optimality?

Part B

(Answer any five questions. Weightage 2 for each question.)
9. Develop the procedure to test the general linear hypothesis based on a linear model, stating clearly the assumptions.
10. Explain the technique of estimation of two missing observations in a LSD.
11. Obtain relative efficiency of RBD in comparison to CRD.
12. Outline the analysis of ANCOVA for RBD with one concomitant variable.
13. Define BIBD. Construct a BIBD with the following parameters:$\mathrm{v}=\mathrm{b}=4, \gamma=\kappa=3$ and $\lambda=2$.
14. In BIBD, show that (i) $b k=v r$. (ii) $\lambda(v-1)=r(t-1)$.
15. Explain the concept of confounding in factorial experiments?
16. Explain the use of response surface designs.

Part C

(Answer any three questions. Weightage 5 for each question.)
17. Prove a necessary and sufficient condition of estimability. If $e^{\prime} \beta$ and $m^{\prime} \beta$ are estimable, find $V\left(e^{\prime} \hat{\beta}\right)$ and covariance $\left(e^{\prime} \hat{\beta}, m^{\prime} \hat{\beta}\right)$, where $\hat{\beta}$ is the least square estimate of β.
18. Describe the analysis of a completely Randomized Design with k observations percell.
19. In the case of two associate class PBIBD, define the parameters and develop the intra-block analysis using a suitable model.
20. Explain Yates procedure for obtaining the various effect total in a 2^{3} factorial experiment.
21. Construct a 2^{5} design in blocks of 8 plots confounding $\mathrm{ABC}, \mathrm{ADE}$ and BCDE. Gie the analysis of such a design with r replications.
22. Develop the analysis of covariance for randomized block design with one concomitant variable, stating clearly the assumptions.

