Model Question Paper

Second Semester M.Sc Degree Examination (CSS) ST2C06 -MULTIVARIATE DISTRIBUTIONS

Part A
 (Answer any five questions. Weightage 1 for each question.)

1. Suppose $(\mathrm{X}, \mathrm{Y}) \sim \mathrm{BN}\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)$. Find $\mathrm{E}(\mathrm{X} \mid \mathrm{Y})$.
2. Define Gumbel bivariate exponential distribution. State any one property of the same.
3. Define Singular multivariate normal distribution.
4. Define Multinomial distribution. Give any two applications of the same.
5. Find the variance and covariance of normal variates which have the quadratic form

$$
3 y_{1}^{2}+2 y_{2}^{2}+2 y_{3}^{2}+4 y_{1} y_{2}+2 y_{2} y_{3}
$$

in their distribution.
6. Let $\mathrm{X} \sim \mathrm{N}_{p}(\mu, \Sigma)$. Write down the characteristic function of X .
7. Define Wishart distribution.
8. Define Multiple correlation and Partial correlation coefficients.

Part B

(Answer any five questions. Weightage 2 for each question.)

9. Define the bivariate Marshall-Olkin exponential distribution and point out its applications. Derive its m.g.f.
10. Explain a multinomial distribution. Show that $\operatorname{Corr}\left(X_{i}, X_{j}\right)=-\sqrt{\frac{p_{i} p_{j}}{\left(1-p_{i}\right)\left(1-p_{j}\right)}}$ under usual notations.
11. If $X=\left[\begin{array}{c}X^{(1)} \\ -- \\ X^{(2)}\end{array}\right]$ follows $N_{p}(\mu, \Sigma)$, find the conditional distribution of $X^{(1)}$ on $X^{(2)}$. Show that the regression of $X^{(1)}$ on $X^{(2)}$ is linear.
12. If $Y=A X A^{\prime}$, obtain the Jacobian of the transformation when X is (i) symmetric (ii) not symmetric.
13. Derive the null distributions of the sample correlation coefficient and sample partial correlation coefficient.
14. If $X=T T^{\prime}$ where T is a lower triangular matrix, find the Jacobian of the transformation.
15. The exponent of a bivariate normal density function is

$$
-\frac{1}{24}\left(x^{2}-2 x y+4 y^{2}-10 x-20 y+100\right) .
$$

Determine all the parameters of the distribution.
16. Suppose (X, Y) $\sim \operatorname{BN}\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)$. Show that if $\rho=0$, then X and Y are independent. Is the converse true?

Part C

(Answer any three questions. Weightage 5 for each question.)
17. State and prove Cochran's theorem on quadratic forms.
18. If $X \sim N_{p}(0, \Sigma)$, show that the quadratic form $X^{\prime} A X$ follows Chi-square distribution with r d.f. iff $A \Sigma$ is idempotent of rank r.
19. (a) State and establish the reproductive property of Wishart distribution $W_{p}(n, \Sigma)$.
(b) Show that any principal submatrix of a Wishart matrix is also a Wishart matrix.
20. Derive the M.L.E's of μ and Σ in $N_{p}(\mu, \Sigma)$ and show that they are independently distributed.
21. Show that $X \sim N_{p}(\mu, \Sigma)$ if and only if X can be written in the form $X=\mu+B Y$, under conditions to be stated.
22. Derive the characteristic function of a Wishart matrix and hence derive its distribution.

