Model Question Paper (Model I)

MAHATMA GANDHI UNIVERSITY

B.Sc. Physics Programme

V Semester Examination. (Month) (Year)

PH5B04U – DIGITAL ELECTRONICS

Instructions:

Time allotted: 3 hours

Answer all questions in part A. This contains 4 bunches of 4 objective questions. For each bunch, grade A will be awarded if all the 4 answers are correct, B for 3, C for 2, D for 1 and E for 0. Answer any 5 questions from part B, any 4 from part C and any 2 from part D. Candidates can use non-programmable calculators (ordinary/scientific) and/or tables.

Part A (Objective type – weight 1 each)

Bunch I

- 1. The decimal number (-39), when expressed as a signed binary in the sign-magnitude form is
 - (a) 01011000 (b) 00100111 (c) 11011000 (d) 10100111
- 2. The binary equivalent and its 2's complement are the same for a decimal number, among the group of decimal numbers 8,9,10 & 11. Which one is it?
 - (a) 8 (b) 9 (c) 10 (d) 11.
- 3. Which of the following is not a valid rule of Boolean algebra?
 - (a) A + 1 = 1 (b) A + 0 = 0 (c) $A \cdot A = A$ (d) A + 0 = A.
- 4. The Boolean expression AB + CD represents
 - (a) two ORs ANDed together
 - (b) a 4-input AND gate
 - (c) two ANDs ORed together
 - (d) an exclusive OR.

Bunch II

- 5. A 3-variable Karnaugh map has
 - (a) sixteen cells (b) eight cells (c) four cells (d) three cells.
- 6. If $Y = (\overline{A} + B)(A + B)$, then

	(a) $Y = A$	(b) $Y = B$	(c) Y = A	+ B (d) Y	$=\overline{A} + B$	
7.	The logic gate which can be used as a comparator is					
	(a) AND gate	e (b) XOR gat	e (c) NANI) gate	(d) XNOR gate.	
8.	If $F(A, B, C) = \sum (1,3,5)$, then $\overline{F}(A, B, C) =$					
	(a) $\Pi(1,3,5)$	(b) $\Pi(0,2,4,6)$	(c,7)	$\sum (1,3,5)$	(d) $\sum (0,2,4,6,7)$	

Bunch III

- 9. Full adder is a combination of
 - (a) 2 half adders
 - (b) 2 half adders and an OR gate
 - (c) 2 half adders and an AND gate
 - (d) 2 half adders and a XOR gate.
- 10. Data selectors are basically the same as
 - (a) decoder (b) demultiplexer (c) encoder (d) multiplexer.
- 11. For a T flip-flop, the output is
 - (a) Always 0, when T=0 (b) always 0, when T=1
 - (c) $Q_{n+1} = Q_n$, when T=0 (d) $Q_{n+1} = Q_n$ when T=1.
- 12. The number of CLK pulses required to write and read one byte of information in a SISO shift register is
 - (a) 2 (b) 4 (c) 8 (d) 16.

Bunch IV

- 13. The number of flip-flops required for a decade counter is
 - (a) 3
- (b) 4
- (c)9
- (d) 10.
- 14. The race-around problem does not occur in
 - (a) SRFF
- (b) clocked SRFF
- (c) JKFF
- (d) MSJKFF
- 15. A JKFF with J = 1 and K = 1 has a 10 KHz clock input. The Q output is
 - (a) constantly high
- (b) constantly low
- (c) a 10 KHz square wave
- (d) a 5 KHz square wave.
- 16. The percentage resolution of a D/A converter is determined by
 - (a) the value of the resistors used in the R-2R ladder network
 - (b) the total number of bits of the digital data input
 - (c) the supply voltage
 - (d) the number of 1's in the digital data input.

Part B (Short answer questions – weight 1 each)

- 17. What is an ASCII code? Give a short note on it.
- 18. Write the expression for a 3-input EXOR gate. Construct the complete truth table showing the outputs for all possible cases. Also draw the logic diagram.

- 19. What is meant by propagation delay? Mention a device which is used as a delay device.
- 20. Find the values of the variables that make each product term 1 and each sum term 0.
 - $(a)A\overline{B}C$
- (b)ABCD
- $(c)\overline{A} + B + \overline{C}$
- (d) $\overline{A} + \overline{B} + C + \overline{D}$
- 21. Describe the working of a half adder.
- 22. What is a MUX? Explain the difference between MUX and DEMUX.
- 23. What is meant by edge triggering? Give the difference between positive and negative edge triggering.
- 24. Distinguish between the performance of asynchronous and synchronous counters.

Part C (Short essay/Problems – weight 2 each)

25. Subtract the following numbers using 2's complement method.

(a)
$$+47 - (+16)$$

(b)
$$+23 - (+65)$$

26. Apply DeMorgan's theorem to simplify the following expressions.

(a)
$$\overline{(A(B+C))}$$

(b)
$$\overline{(A + \overline{B})(\overline{C} + D)}$$

27. Use a Karnaugh map to simplify the following expression.

$$Y = ABCD + A\overline{B}\overline{C}\overline{D} + A\overline{B}C + AB$$

- 28. Design the logic diagram of a four bit adder-subtractor and explain its working.
- 29. What is meant by a decoder? Give the truth table and logic diagram of a binary to octal decoder.
- 30. Convert the following truth table to the corresponding Boolean expression using sum of products method.

	Output		
A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Part D (Essay-type questions - weight 4 each)

- 31. State and explain DeMorgan's theorems Draw the logic circuits representing the theorems using basic gates. Prove the theorem for a 4-variable function.
- 32. Draw the logic diagram of a Master Slave JK flip-flop and explain its working.
- 33. Explain the working of a Digital to Analog converter using R-2R ladder network.