MSc. Mathematics Degree (MGU-CSS-PG) Examination

MODEL QUESTION PAPER

PC 3 - MT01C03 MEASURE THEORY AND INTEGRATION

Time 3 hrs.

Maximum Weight. 30

Section A (Short answer Type Questions) Answer any five questions Each question has1 weight

- 1) Define the Lebesgue outer measure $m^*(A)$ of a subset A of \mathbb{R} and use the definition to show that the outer measure of a countable set is zero
- 2) If f is a measurable function and if f = g a.e, show that g is measurable.
- 3) State the bounded convergence theorem
- 4) If f is integrable show that |f| is integarble. Is the converse true? Justify.
- 5) If f is a nonnegative measurable function on a measure space (X, \mathfrak{B}, μ) show that $\int f d\mu = 0$ if and only if f = 0 a.e.
- Define a positive set with respect to a signed measure v. Show that the union of a countable collection of positive sets is positive.
- 7) If $f_n \to f$ in measure show that there is a subsequence $\{f_{n_k}\}$ which converge to f a.e.
- 8) If (X, S, μ) and (Y, T, ν) are σ finite measure spaces, define the product measure $\mu \times \nu$ on $S \times T$

Section B (Short Essay Type Questions) Answer any five questions. Each question has 2 weights

- Show that the interval of the form (a,∞) is measurable and use it to show that every Borel set is measurable.
- 10) If f is measurable and B is a Borel set, show that $f^{-1}(B)$ is measurable
- State Fatou's' lemma. Give an example to show that we may have strict inequality in the Fatou's lemma.
- 12) If f and g are integrable over E, show that f + g is integarble over E and $\int f + g = \int f + \int g$
- 13) Let f be an integrable function on a measure space (X, \mathfrak{B}, μ) . Show that given $\varepsilon > 0$ there exists

 $\delta > 0$ such that for each measurable set E with $m(E) < \delta$, we have $\left| \int_{E} f \right| < \varepsilon$

- 14) If ν is a signed measure in a measurable space (X, \mathfrak{B}) then show that there is a positive set A and a negative set B such that $A \cap B = \Phi$ and $X = A \cup B$
- 15) If $f_n \to f$ in measure and if $g_n \to g$ in measure then show that $f_n + g_n \to f + g$ in measure.
- 16) By integrating $e^{-y}sin2xy$ with respect to x and y, show that $\int_0^\infty \frac{e^{-y}sin2xy}{y} = \frac{1}{4}log5$

Section C (Long Essay Type Questions) Answer any three questions. Each question has 5 weights

- 17) Show that the outer measure $m^*(A)$ of a subset A of \mathbb{R} satisfies the following properties.
 - a. $m^*(E) \ge 0$ for every $E \subset \mathbb{R}$
 - b. $m^*(I) = l(I)$ where *I* is any interval.
 - c. $m^*(E) = m^*(E + x)$ for every $E \subset \mathbb{R}$ and $x \in \mathbb{R}$
 - d. $m^*(\cup E_n) \leq \sum m^*(E_n)$ where $E_n \subset \mathbb{R}$ for every n = 1, 2, 3, ...
 - e. If $A \subseteq B$ show that $m^*(A) \leq m^*(B)$ for every subset *A* and *B* of \mathbb{R}

18)

- A. Let f be a bounded function defined on a measurable set E with $mE < \infty$. Show that f is measurable if and only if $inf_{f \le \psi} \int_{E} \psi(x) dx = sup_{\varphi \le f} \int_{E} \varphi(x) dx$
- B. State Fatou's lemma and use it to prove the Monotone Convergence theorem. Give an example to show that the that Monotone Convergence theorem will not hold for a decreasing sequence of non negative measurable functions.
- 19) A. State and prove the Lebesgue convergence theorem for measurable functions
 - B. Let f be an increasing real valued function on the interval [a, b]. Then show that f is differentiable almost everywhere, the derivative f' is measurable and

$$\int_{a}^{b} f'(x) dx \leq f(b) - F(a)$$

- 20) State and prove the Radon Nikodym theorem.
- 21) Let μ^* be an outer measure defined on the power set of a nonempty set X. Show that the class \mathfrak{B} of all μ^* measurable subsets is a σ algebra. If $\overline{\mu}$ is the restriction of μ^* to \mathfrak{B} , show that $\overline{\mu}$ is a complete measure on \mathfrak{B}
- 22) If (X, S, μ) and (Y, T, ν) are σ finite measure spaces and if $V \in S \times T$, $\varphi(x) = \nu(V_x)$ and $\psi(y) = \mu(V^y)$ for each $x \in X$ and $y \in Y$, show that φ is S measurable ψ is T measurable and $\int_X \varphi \ d\mu = \int_X \psi \ d\nu$