MAHATMA GANDHI UNIVERSITY
 M.C.A DEGREE EXAMINATION
 MODEL QUESTION PAPER
 (2011 Revised Syllabi)
 First Semester

MCA101 Mathematical Foundations of Computer Science
Time: 3 hours
Maximum: 75Marks

Part A
 Answer any ten questions. Each question carries 3 marks.

1. If A, B, C are sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$ then show that $B=C$
2. Prove that the relation" congruence modulo m " given by
$R=\{(x, y) / x-y$ is divisible by $m\}$ over the set of positive integers is an equivalence relation
3. Define L UB and GLB of subset of a poset. Give examples.
4. Define distributive lattice
5. Define the following
i) DFA
ii) NFA
iii) Transition diagram
6. Construct the truth table for $(\mathrm{p} \Lambda(\mathrm{p} \rightarrow \mathrm{q})) \rightarrow \mathrm{q}$
7. With the help of examples explain free and bound variables
8. Define incidence matrix. Give an example
9. Define a complete bipartite graph. Draw the complete bipartite graphs $\mathrm{K}_{2,3}, \mathrm{k}_{2,4}$ and $\mathrm{K}_{2,5}$
10.Draw a
a) Hamiltonian graph which is not Eulerian
b) Euler graph which is not Hamiltonian
c) Graph which is both Hamiltonian and Eulerian
10. Explain rooted and binary trees with examples
11. State kuratowskis theorem.
($\mathbf{1 0} \mathbf{x} \mathbf{3}=\mathbf{3 0}$ marks)

Part B

All questions carry equal marks.

13 a)
i) State and prove De-Morgans laws on set theory 5marks
ii) Using mathematical induction, show that

$$
\left(n^{3}+2 n\right) \text { is divisible by } 3 \text {, for } n>=1 \quad 4 \text { marks }
$$

OR

(b)
i) Let R be a relation on the set of all ordered pairs of natural numbers defined by (x, y) $\mathrm{R}(\mathrm{u}, \mathrm{v})$ iff $\mathrm{xv}=\mathrm{yu}$. Show that R is an equivalence relation 5marks
ii) Consider the functions $f, g: R \rightarrow R$ Defined by $f(x)=x^{2}+3 x+1, g(x)=2 x-3$, find the composition functions of
i) fof ii) fog iii) gof iv) gog

4marks
14. a).
. Let $A=\{1,2,3,6,9,18\}$ Define R on A by $x R y$ if x / y.Prove that A is a poset. Draw the Hasse diagram for the $\operatorname{poset}(A, R)$

9marks
OR
b)Construct a deterministic finite automata accepting the set of all strings ending in 00 over the alphabet $\{0,1\}$
15. a) Show that (Эx) M(x) follows logically from the premises (x) $(H(x) \rightarrow M(x))$ and (Эx) $\mathrm{H}(\mathrm{x})$
b) Show that $\mathrm{R}^{\wedge}(\mathrm{P} \vee \mathrm{Q})$ is a valid conclusion from the premises $\mathrm{P} \vee \mathrm{Q} \rightarrow \mathrm{R}, \mathrm{P}-\rightarrow \mathrm{M}$ and 7M
16. a) Show that a given connected graph G is an Euler graph if and only if all vertices of G are of even degree

OR
b) Prove that a simple graph with n vertices and k components can have at most

$$
\frac{(\mathrm{n}-\mathrm{k})(\mathrm{n}-\mathrm{k}+1)}{2} \text { edges } \quad 9 \text { marks }
$$

17 a) State and prove Euler's formula

OR

b)
i) Prove that the minimum possible height of an n vertex binary tree is

$$
\left[\log _{\mathrm{g}}(\mathrm{n}+1)-1\right]
$$

4marks
ii) Explain Prim's algorithm to find the shortest spanning tree of a graph with an example

5marks
(5 x $9=45$ marks $)$

