MSc. Mathematics Degree (MGU-CSS-PG) Examination

 (Model Question)Ist Semester

PC 1-MT01C01 -

Time 3 hrs .

Maximum Weight. 30

PART-A

Answer any 5 . Each question has 1 weight

1.) Define vector space.Let V be the set of pairs (x, y) of real numbers and let F be the field of real numbers.Define $(x, y)+\left(x_{1}, y_{1}\right)=\left(0, y+y_{1}\right)$

$$
c(x, y)=(c x, c y) .
$$

Is V with these operations a vector space?
2)Let V be the vector space of all 2×2 matrices over the field F. Let W_{1} be the set of matrices of the form $\left(\begin{array}{ll}x & -x \\ y & z\end{array}\right)$ and let W_{2} be the set of matrices of the form $\left(\begin{array}{ll}a & b \\ -a & d\end{array}\right)$
(i)Prove that W_{1} and W_{2} are subspaces of V
(ii) Find the dimension of $\mathrm{W}_{1} \cap \mathrm{~W}_{2}$
3)Let T be the linear operator on R^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)$. What is the matrix of T in the standard ordered basis for R^{2} ? Further prove that for every real number ' c ' the operator T - cl is invertible.
4) Define the dual space V^{*} of a vector space over the field F.If V has finite dimension n,
prove that $\operatorname{dim} \mathrm{V}^{*}=\mathrm{n}$ by finding a basis for V^{*}.
5) Let D be an n-linear function on $n \times n$ matrices over K.Suppose D has the property that $D(A)=0$ whenever two adjacent rows of A are equal. Then prove that D is alternating.
6) Let K be a commutative ring with identity and let A and B be $n \times n$ matrices over K. Then $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$
7) If $T^{2}=T$, show that T is diagonalizable
8)If T is a linear operator on a finite dimensional vector space V, (a)Define (i)Characteristic Polynomial for T. (ii)Minimal polynomial of T
(b) Do similar matrices have the same minimal polynomial?Give reason.

PART-B

Answer any 5. Each question has 2 weights

9)Show that the vectors $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1)$ and $\alpha_{3}=(0,-3,2)$ form a basis for R^{3}. Express each of the standard basis vectors of R^{3} as a linear combination of α_{1}, α_{2} and α_{3}.
10)Let V be a finite dimensional vector space over the field F and let $\left\{\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{n}\right\}$ be an ordered basis for V. Let W be a vector space over the same field F and let $\beta_{1}, \beta_{2}, . . \beta_{\mathrm{n}}$ be any vectors in W.Then prove that there is precisely one linear transformation T from V into W such that $T \alpha_{j}=\beta_{j}, \quad j=1,2, \ldots n$
11)Let V and W be finite dimensional vector spaces over the field F such that
$\operatorname{dim} V=\operatorname{dimW}$.If is a linear transformation from V into W , then prove that the following are equivalent:
(i)T is invertible
(ii) T is non-singular
(iii)T is onto
12) (a)Define with examples: (i)Transpose of alinear transformation (ii)double dual
(b)Let V be a finite dimensional vector space over F . Show that each basis of V^{*} is the dual of some basis for V.
13)Let K be a commutative ring with identity.Show that the determinant function on 2×2 matrices A over K is alternating and 2 -linear as function of columns of A.
14) (a)Define invariant subspaces
(b)Let T be a linear operator on V.Let U be any linear operator on V which commutes with T.Let W be the range of U and N be the null space of U , Then prove that W and N are invariant under T .
15)Let T be a linear operator on an n-dimensional vector space V.Prove that the characteristic and minimal polynomial for T have the same roots except for multiplicities.
16)Let T be the linear operator on R^{2}, the matrix of which in the standard ordered basis is $\left(\begin{array}{ll}1 & -1\end{array}\right) \quad$ Find all subspaces of R^{2} that invariant under T

2 2

PART-C

Answer any 3. Each question has 3 weights

17)Let W be the subspace of C^{3} spanned by $\alpha_{1}=(1,0, i)$ and $\alpha_{2}=(1+i, 1,-1)$
(i)Show that α_{1} and α_{2} form a basis for W .
(ii)Show that the vectors $\beta_{1}=(1,1,0)$ and $\beta_{2}=(1, \mathrm{i}, 1+\mathrm{i})$ are in W and form another basis for W.
(iii)What are the co-ordinates of α_{1} and α_{2} in the ordered basis $\left\{\beta_{1}, \beta_{2}\right\}$ for W .
18) (a)Find the subspace annihilated by the following functionals on R^{4}

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+2 x_{2}+2 x_{3}+x_{4} \\
& g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{2}+x_{4} \\
& h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-2 x_{1}-4 x_{3}+3 x_{4}
\end{aligned}
$$

(b)Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear where V and W are vector spaces over F . Show that
(i)The range $\left(\mathrm{T}^{t}\right)$ is the annihilator of the null space of T .
(ii) $\operatorname{Rank}\left(\mathrm{T}^{\mathrm{t}}\right)=\operatorname{Rank}(\mathrm{T})$
19) (a)Prove that if f is a non-zero linear functional on the vector space V , then the null space of f is a hyperspace in V and conversely every hyper space in V is the null space of a non-zero linear functional on V .
(b)Let $\mathrm{g}, \mathrm{f}_{1}, \mathrm{f}_{2}, \ldots ., \mathrm{f}_{\mathrm{r}}$ be linear functionals on a vector space V with respective null spaces $N_{1}, N_{2}, \ldots, N_{r}$. Then prove that g is a linear combination of $f_{1}, f_{2}, \ldots, f_{r}$ if and only if N contains the intersection $\mathrm{N}_{1} \cap \mathrm{~N}_{2} \ldots . . \cap \mathrm{N}_{\mathrm{r}}$.
20) If D is any alternating n-linear function on $K^{n \times n}$ then prove that for each nxn matrix A $D(A)=(\operatorname{det} A) D(I)$ where I denotes the $\mathrm{n} \times \mathrm{n}$ identity matrix.
21)State and prove Cayley-Hamilton theorem for linear operators.
22)Let V be a finite dimensional vector space over the field F and let T be a linear operator on V.Prove that T is diagonalizable iff the minimal polynomial for T has the form $\mathrm{p}=\left(\mathrm{x}-\mathrm{c}_{1}\right)\left(\mathrm{x}-\mathrm{c}_{2}\right) \ldots \ldots . .\left(\mathrm{x}-\mathrm{c}_{\mathrm{k}}\right)$ where $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{\mathrm{k}}$ are distinct elements of F .

