MSc. Mathematics Degree (MGU-CSS-PG) Examination

(Model Question)

Ist Semester

PC 1-MT01C01 - LINEAR ALGEBRA

Time 3 hrs.

Maximum Weight. 30

PART-A

Answer any 5. Each question has 1 weight

1.) Define vector space.Let V be the set of pairs (x,y) of real numbers and let F be the

field of real numbers. Define $(x,y) + (x_1,y_1) = (0, y + y_1)$

c(x,y) = (cx,cy).

Is V with these operations a vector space?

2)Let V be the vector space of all 2x2 matrices over the field F.Let W₁ be the set of

matrices of the form $\begin{pmatrix} x & -\dot{x} \\ Y & z \end{pmatrix}$ and let W₂ be the set of matrices of the form $\begin{pmatrix} a & b \\ -a & c \end{pmatrix}$

(i)Prove that W_1 and W_2 are subspaces of V

(ii)Find the dimension of $W_1 \cap W_2$

3)Let T be the linear operator on R^2 defined by $T(x_1, x_2) = (-x_2, x_1)$. What is the matrix of

T in the standard ordered basis for R^2 ? Further prove that for every real number 'c' the operator T- cl is invertible.

4) Define the dual space V* of a vector space over the field F.If V has finite dimension n,

prove that $\dim V^* = n$ by finding a basis for V^* .

- 5) Let D be an n-linear function on n x n matrices over K.Suppose D has the property that D(A) = 0 whenever two adjacent rows of A are equal. Then prove that D is alternating.
- 6) Let K be a commutative ring with identity and let A and B be n x n matrices over K.Then det(AB) = (detA) (detB)
- **7)** If $T^2 = T$, show that T is diagonalizable
- 8) If T is a linear operator on a finite dimensional vector space V, (a) Define

(i)Characteristic Polynomial for T. (ii)Minimal polynomial of T

(b) Do similar matrices have the same minimal polynomial? Give reason.

PART-B

Answer any 5. Each question has 2 weights

- **9)**Show that the vectors $\alpha_1 = (1,0,-1)$, $\alpha_2 = (1,2,1)$ and $\alpha_3 = (0,-3,2)$ form a basis for R³. Express each of the standard basis vectors of R³ as a linear combination of α_1 , α_2 and α_3 .
- **10)**Let V be a finite dimensional vector space over the field F and let { $\alpha_1, \alpha_2,, \alpha_n$ } be an ordered basis for V.Let W be a vector space over the same field F and let $\beta_1, \beta_2, ... \beta_n$ be any vectors in W.Then prove that there is precisely one linear transformation T from V into W such that $T\alpha_j = \beta_j$, j = 1, 2, ... n
- 11)Let V and W be finite dimensional vector spaces over the field F such that

dimV=dimW.If is a linear transformation from V into W, then prove that the following are equivalent:

(i)T is invertible(ii)T is non-singular(iii)T is onto

12) (a)Define with examples: (i)Transpose of alinear transformation (ii)double dual

(b)Let V be a finite dimensional vector space over F.Show that each basis of V* is the dual of some basis for V.

13)Let K be a commutative ring with identity. Show that the determinant function on

2x2 matrices A over K is alternating and 2-linear as function of columns of A.

14) (a)Define invariant subspaces

(b)Let T be a linear operator on V.Let U be any linear operator on V which commutes

with T.Let W be the range of U and N be the null space of U, Then prove that W and N are invariant under T.

15)Let T be a linear operator on an n-dimensional vector space V.Prove that the characteristic and minimal polynomial for T have the same roots except for

multiplicities.

16)Let T be the linear operator on R², the matrix of which in the standard ordered basis

is $\begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$ Find all subspaces of R² that invariant under T

PART-C

Answer any 3. Each question has 3 weights

17)Let W be the subspace of C³ spanned by $\alpha_1 = (1,0,i)$ and $\alpha_2 = (1+i,1,-1)$

(i)Show that α_1 and α_2 form a basis for W.

(ii)Show that the vectors $\beta_1 = (1,1,0)$ and $\beta_2 = (1, i, 1+i)$ are in W and form another basis for W.

(iii)What are the co-ordinates of α_1 and α_2 in the ordered basis { β_1 , β_2 } for W.

18) (a)Find the subspace annihilated by the following functionals on R^4

 $f(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 2x_3 + x_4$

 $g(x_1, x_2, x_3, x_4) = 2x_2 + x_4$

 $h(x_1, x_2, x_3, x_4) = -2x_1 - 4x_3 + 3x_4$

(b)Let T: $V \rightarrow W$ be linear where V and W are vector spaces over F.Show that

(i)The range(T^t) is the annihilator of the null space of T.

(ii)Rank(T^t) = Rank(T)

- **19)** (a)Prove that if *f* is a non-zero linear functional on the vector space V, then the null space of *f* is a hyperspace in V and conversely every hyper space in V is the null space of a non-zero linear functional on V.
 - (b)Let g, f_1 , f_2 , ..., f_r be linear functionals on a vector space V with respective null spaces $N_1, N_2, ..., N_r$. Then prove that g is a linear combination of $f_1, f_2, ..., f_r$ if and only if N contains the intersection $N_1 \cap N_2 ... \cap N_r$.
- **20)** If D is any alternating n-linear function on K^{nxn} then prove that for each nxn matrix A

D(A) = (det A) D(I) where I denotes the n x n identity matrix.

21)State and prove Cayley-Hamilton theorem for linear operators.

22)Let V be a finite dimensional vector space over the field F and let T be a linear operator on V.Prove that T is diagonalizable iff the minimal polynomial for T has the

form $p = (x - c_1)(x - c_2)....(x - c_k)$ where $c_1, c_2, ..., c_k$ are distinct elements of F.

••••••