MAHATMA GANDHI UNIVERSITY, KOTTAYAM

B.Sc. COMPUTER MAINTENANCE AND ELECTRONICS

SYLLABUS - THIRD AND FOURTH SEMESTERS

	Semester � III							
	Course Code	Course Name	Contact Hours	Credits				
1	EM3B08	First Core Course • 5• Analog Communications • • • • • • • • • • • • • • • • • • •	4	4				
2	EM3B10	First Core Course • 6 Analog Electronics • • • • • • • • • • • • • • • • • • •	4	4				
3	EM3B11	Second Core Course • 1 Basics of Electrical Technology • • • • •	3	2				
4	EM3C06	First Complementary Course - 3	5	4				
5	EM3C07	Second Complementary Course - 3 Operating System Concepts	3	3				
6	EM3B07	First Core Course Practical - 3 Analog Circuits Lab	3	2				
7	EM3B09	First Core Course Practical - 4 Electronic Communication Systems Lab	3	2				
Total				21				

EM3B08�� First Core Course -5

ANALOG COMMUNICATIONS ♦ (same as ♦ EC3B11)

Aim of the course:

���� To get a thorough knowledge of modulation and analog communication techniques

Contact hours ��: 72

Credits**�������������**: 4

Course Outline:

Unit I

Module

Communication Systems- Modulation • Need for modulation- External noise, Internal noise, • Noise calculation- Noise Figure, Signal to Noise ratio, *Text book: Electronic Communication Systems* • - Kennedy and Davis , pp 2-6, 15-26

Module

Amplitude Modulation- Frequency spectrum of AM wave Representation of AM wave, Power relation in AM wave, Generation of AM, Basic requirement, Grid modulated Class C amplifier, Plate modulated Class C Amplifier, Modulated transistor amplifier

Text book: Electronic Communication Systems - Kennedy and Davis, pp 35-52

Module

SSB Techniques • Evolution and description of SSB, Separation of Carrier, Separation of unwanted side band- Filter system, Phase shift method, Third method, Extensions of SSB-Pilot carrier systems, ISB and VSB

Text book: Electronic Communication Systems - Kennedy and Davis , pp 57-75

Unit II

Module

Frequency Modulation • Theory of Frequency and Phase modulation, Description of system, Mathematical representation of FM, Phase Modulation-inter system comparison, Noise and FM-Noise Triangle, De-emphasis, Pre-emphasis, Forms of interference, Comparison of Wide band and Narrow band FM, Stereo-phonic FM multiplex system

Text book: Electronic Communication Systems • Kennedy and Davis, pp • 79-84,89-100

Module

FM Generation and Detection-Generation of FM • Direct method, Varactor diode modulator- Stabilized reactance modulator- Indirect method, Slope detection, Balanced Slope detector, Phase discriminator, Ratio detector

Text book: Electronic Communication Systems - Kennedy and Davis, pp 100-112, 162-171

Module

Radio receivers- Reciever types, TRF superheterodyne receiver, Sensitivity, Selectivity, Image frequency and its rejection, double spotting, Separately excited mixer, Self excited mixer, local oscillator, image frequency and IF amplifiers, AGC- diode detector, AFC

FM receivers Amplitude limiting, Stereo FM multiplex reception

Text book: Electronic Communication Systems - Kennedy and Davis , pp 118-131,133-141, 149, 158-162, 173-174

Reference Book: Electronic Communication PHI Roddy and Coolen-PHI

EM3B10 ������ First Core Course � 6 �������

ANALOG ELECTRONICS (same as EC3B12)

Aim of the course:

To get a thorough knowledge of analog ICs

Contact hours♦: 72

Course Outline

Unit I

Module 1:

Integrated Circuits, Types of ICs, Development of ICs • SSI, MSI, LSI, VLSI packages, IC package types, Pin identification and temperature ranges , Device identification, Power supplies for ICs.

Differential amplifier circuit configurations • DC and AC analysis of Dual input balanced output and Dual input unbalanced output Differential amplifiers.

Module 2: Operational Amplifiers

Amplifiers

Operational Amplifie

Block diagram representation of a typical op-amp • schematic symbol - A general purpose IC op amp • IC 741 and its features, Op-Amp parameters - input offset voltage and current, input bias current, differential input resistance, output resistance, output voltage swing, common mode rejection ratio (CMMR), slew rate and gain-bandwidth product, • ideal and practical op-amps • Equivalent circuit of an op-amp, Open-loop op-amp configurations, • Frequency response of an op-amp.

Closed-loop non-inverting and inverting amplifiers • measurement of closed-loop voltage gain, differential input voltage, input resistance, output resistance, bandwidth and total output offset voltage, • Voltage follower, Differential amplifier with one op-amp, two op-amps and three op-amps • measurement of voltage gain, Instrumentation amplifier, • Summing, Scaling and averaging amplifiers • output voltage, Current to voltage and Voltage to current converters, Integrator, Differentiator, • Comparators • Basic comparator, Zero-crossing detector, Schmitt trigger.

Unit II

Introduction, Advantages of active filters over passive filters, Types of filters, Frequency response characteristics • Butterworth, Chebychev and Cauer, Order of filters, • First order Butterworth filters - low pass, high pass, band pass - wide band-pass and narrow band-pass filters, band reject • wide band-reject and narrow band-reject filters, all pass filters, Design of filters.

 Module
 5:

 Oscillators
 0.00

 Oscillators
 0.00

Oscillators • Principles • Types • Frequency stability, Sine wave oscillators - Phase shift oscillator and Wien bridge oscillator, Design of sine wave oscillators, • Square wave generator, Triangular wave generator, Saw-tooth wave generator, Voltage controlled oscillator - IC 566.

Module 6: Timers, Phase locked loops and Voltage Regulators

Text Book: Op Amps and Linear Integrated Circuits by Ramakant A

Reference Text Books:

- 1. Integrated Circuits by Botkar
- 2. Integrated Electronics by Jacob Millman & C C Halkias (Tata McGraw Hill).
- 3. Electronic Devices and Circuits by Allan Mottershed PHI

EM3B11 Second Core Course � 1��

BASICS OF ELECTRICAL TECHNOLOGY

Aim of the course:

* To introduce the basic concepts of electricity and magnetism

Course Outline:

Module I: Electricity and

Nature of electric current � Ohm�s Law � Series Parallel Circuits

Electric charge � Coulomb�s Law � Electric Field � Field strength � Electric Flux Density � Electric Potential

Capacitor • Capacitance • Parallel Plate Capacitor • Capacitors in series and parallel • Energy stored in a capacitor

Magnetic Field & Laws of Magnetic Force Magnetic Field Strength Magnetic Potential Flux Density Permeability Magnetic Magneto Motive Force Magnetic Field Strength Magnetic Circuits

Electromagnetic induction & Faraday & Laws Laws Inductance Inductance Inductance Inductance Inductance Inductance in series and parallel • Energy stored in magnetic field

Module II : AC Circuit Analysis

�����������������(18 hrs)

Alternating current production AC Circuits Series and parallel Resonance

Three phase system phase sequence Star and Delta connection line and phase voltage, Star / Delta Conversion, Power in three-phase system

Concept of Generation, Transmission and Distribution of Electricity § Single phase system § Electrical safety

Module III�: AC & DC

Machines

Fundamentals of AC machines

Transformer • working principle, construction, EMF equation, Voltage transformation ratio • Losses in a transformer- Efficiency of a transformer • All day efficiency Auto Transformers.

Alternators • Principle of operation • construction • speed and frequency

Fundamentals of DC machines

Working principle of a DC Generators • Construction - Different types of DC Generators • EMF Equation of a generator

Working principle of DC Motors 💠 significance of back emf 💠 Voltage equation of motor, condition for maximum power 💠 speed of a DC motor.

Module I: A Text-Book of Electrical Technology (Volume I) ♦ B.L. Theraja ♦(S. Chand & Co.)

Module II, III: A Text-Book of Electrical Technology (Volume II & III) • B.L. Theraja

♠ (S. Chand & Co.)

Reference Books:

- 1. Hughes Electrical Technology Edward Hughes
- 2. Basic Electrical Engineering �� � V.N. Mittle (TMH)

�������� VECTOR CALCULUS, FOURIER SERIES AND ANALYTIC GEOMETRY

(Common with Mathematics for B.Sc. Programme MP3C01)

EM3C07 ����� Second Complementary Course � 3

OPERATING SYSTEM CONCEPTS

Aim of the course:

���� To provide an in-depth knowledge of operating system, its functioning and its need in a computer system

Contact hours : 54

Course Outline:

Module **000000000000**

Introduction: Operating System Early Systems Simple Monitor, Performance, Multiprogramming Time-sharing, Real-time Systems, Protection, Different Classes of Computers. Multiprocessor

Operating System Services: Types of services, The User View, The Operating System View File Systems: File Concept, File Support, Access Methods, Allocation Methods, Directory Systems, File Protection, Implementation Issues

Module II������ Process

CPU Scheduling Review of Multiprogramming Concepts, Scheduling Concepts

Deadlocks • The deadlock problem, deadlock characterization, Resource allocation graph, deadlock prevention, deadlock avoidance, deadlock detection, Recovery from deadlock

Memory Management: Preliminaries, Bare Machine, Resident Monitor, Swapping, Multiple Partitions, Paging Segmentation, Combined Systems

interiory intallagement. I terminatios, bare interine, resident montor, swapping, maniple facturens, faging segmentation, combined systems **4.4.4**

Virtual Memory: Overlays, Demand Paging, Performance of Demand Paging, Page Replacement, Virtual Memory Concepts, Page Replacement Algorithms FIFO, Optimal replacement, Least Recently used, LRU Approximation

Text Book:

- 1. Operating System Concepts (Second Edition) James. L. Peterson
 - �� Abraham Silberschatz
 - ♦♦ (Addition Wesley Publishing Co.)

Reference Books:

- 1. Modern Operating System ���� ���� Andrew .S. Tanenbaum
- 2. Operating System

EM3B07����� First Core Course Practical • 3

ANALOG CIRCUITS LAB

Aim of the course:

To equip the students with the practical knowledge of Amplifiers, Oscillators, Analog ICs and their circuits

Contact Hours: 54

List of Experiments

- 1. Halfwave rectifier / Fullwave rectifier Center tapped
- 2. Bridge Rectifier (with and without C filter)
- 3. Zener Voltage Regulator
- 4. Clipping circuits
- 5. Clamping circuits
- 6. Single Stage RC coupled BJT Amplifier
- 7. FET CS Amplifier
- 8. RC Phase shift Oscillator
- 9. Astable Multivibrator using BJT
- 10. Sweep Circuit Using BJT
- 11. Measurement of 741 Op-amp parameters- Offset Voltage, CMRR and Slew Rate
- 12. Inverting And Non Inverting Amplifier
- 13. Summing And Difference Amplifier
- 14. Integrating And Differentiating Amplifier
- 15. Active Filters- First-order Low Pass Filter, First-order High Pass Filter, First-order Wide Band Pass Filter, Narrow Band Reject Filter
- 16. Wien Bridge Oscillator
- 17. Square Wave And Triangular Wave Generators
- 18. 555 IC Astable Multivibrator
- 19. Comparators Inverting And Non inverting
- 20. Schmitt Trigger

EM3B09����� First Core Course Practical � 4

ELECTRONIC COMMUNICATION SYSTEMS LAB

Aim of the course:

To equip the students with the practical knowledge of circuits used in the electronic communication field

Contact Hours: 54

- 1. AM Generation
- 2. AM Demodulation

- 3. Mixer
- 4. FM modulation using NE566 IC
- 5. FM Demodulation
- 6. Hartley Oscillator
- 7. Colpitts oscillator
- 8. Pulse Amplitude Modulator(PAM)
- 9. Pulse Width Modulator(PWM)
- 10. Pulse Position modulator(PPM)
- 11. Second order Low Pass filter
- 12. Second order High pass Filter
- 13. Frequency Shift Keying(FSK)
- 14. Amplitude Shift Keying(ASK)
- 15. Phase Shift Keying(PSK)
- 16. Voltage Controlled Oscillator(VCO)
- 17. Frequency Synthesizer using PLL
- 18. Time Division Multiplexing(TDM)
- 19. Error Checking and Correcting Codes
- 20. Adjustable Logic Delay
- 21. CDMA Spreader/Despreader
- 22. All Pass Filter
- 23. Voltage Limiter
- 24. Voltage-to-Current Converter
- 25. Current-to-Voltage Converter

Semester - IV							
	Course •Code	Course Name	Contact Hours	Credits			
1	EM4B12	First Core Course • 7 Instrumentation Electronics • • • • • • • • • • • • • • • • • • •	4	4			
2	EM4B13	Second Core Course • 2 Fundamentals of Computer Systems	3	3			
3	EM4B14	Second Core Course • 3 Microprocessor Architecture, Programming and Applications	3	3			
4	EM4C08	First Complementary Course - 4 �������(same as �MP4C0l)�����(same as) Differential Equations, Group Theory and Legendre Polynomial	5	4			
5	EM4C09	Second Complementary Course - 4 Computer Organization	3	3			
6	EM4B15	Second Core Course Practical - 1 Intel 8085 Assembly Language Programming Lab	4	2			
7	EM4B16	On the Job Training	3	1			
Total 25 20							

EM4B12������� First Core Course � 7

INSTRUMENTATION ELECTRONICS �� (same as EC4B17)

Aim of the course:

This course aims to impart an in-depth knowledge in the field of transducers, bridges, and electronic instruments.

Contact hours: 72 hours

Course Outline

Unit- I

Generalized Measurement systems - Static and dynamic characteristics - units and standards of measurements - error analysis.

Classification of transducers - Selecting a transducer- Resistive, inductive and capacitive transducers - strain gauge and gauge factor, Temperature transducers - Thermistor, Thermo couples, LVDT, Displacement Transducers, Piezo-Electric transducers

Module III-Signal Conditioning

Module IV- Data Acquisition and conversion

Principle of operation of DAC- Weighted resistor network- Binary Ladder • resolution- linearity offset-principle of operation of ADC- counter method, successive approximation, single slope and dual slope integration

Module &V Electronic Measurements and Display Instruments & `

DC Voltmeter-DC Ammeter, Analog Multimeter, Digital Multimeter • Block reperesentation- Simple frequency Counter, Q meter • Basic Q meter circuit • Cathode ray Oscilloscopes - block schematic - special oscilloscopes - Storage oscilloscope, Graphic recorder and X-Y recorders.

Signal generators, RF signal generators, Sweep Frequency generators, Pulse generators, Simple frequency counter, Wave analyzer, Harmonic distortion analyzer, Spectrum analyzer, **Option** Option** Opti

Text Books:

1. Albert D.Helfrick and William D.Cooper - Modern Electronic Instrumentation

* and Measurement Techniques, Prentice Hall of India, 2003.

2. Electronic Instrumentation • H S Kalsi - TMH

Reference Text Books:

1. Alan. S. Morris, Principles of Measurements and Instrumentation, Prentice

♦♦♦ Hall of India, 2nd edn., 2003.

EM4B13��Second Core Course � 2���

FUNDAMENTALS OF COMPUTER SYSTEMS

Aim of the course:

This course aims to impart detailed knowledge on the functional hardware units of the computer

Contact hours: 54 hours

Credits**��������� �**: 3

Course Outline

History of Computers, Types and Generation of computers-micro, mini, main frame and super computers

Basic components of a digital computer (Block Diagram Explanation)

���������������� ROM � Mask ROM, EPROM, EEPROM, Flash RAM, CMOS

Physical Memory Organization • DIP, SIMM, DIMM, SIPP, memory speed, memory capacity of the motherboard

Power supplies SMPS, UPS

Hard Disk 🔷 HDD components � disk platter, Read/Write Head, head arm/head slider, spindle motor, logic board, air filter, head actuator mechanism

Disk Geometry Sides or heads, track, cylinder, sectors

Disk Recording • Data Recording Method, Writing on and Reading from a magnetic disk

Data Encoding Methods • FM, MFM and RLL encoding scheme, Interleave, Skew

Hard disk Interfacing • IDE, SCSI controllers

Hard Disk Formatting **\Phi** Low level and high level formatting

Other Secondary storage devices- Floppy Disks, CD-ROM, CD-R, CD-RW, DVD

Expansion Bus/Slots � 8 bit ISA, EISA, Local Bus (VL Bus), PCI, AGP

ROM BIOS and Boot up Process & BIOS, POST, Disk Booting

Input/ Output Devices • Working of keyboard, mouse, joystick and track ball

Display Devices • working of monochrome and colour CRT, LCD Panel

Printer \to Working of Dot Matrix, Laser, Inkjet, colour thermal and dye sublimation colour printers

Scanner • Flat bed, Sheet-fed and Hand-held scanners

Video Basics • Display Adaptor, memory and video subsystem, creating screen image, video display modes, Display resolution, use of colour

Motherboard • CPU Socket, Add-in Card bus slots for ISA, EISA, PCI, AGP, Memory and secondary cache sockets or chips, ROM BIOS and BIOS CMOS. Mother board clock, Back Plane I/O Ports for serial, parallel, mouse and keyboard ports, USB, On Board connectors for power, IDE bus, SCSI, Floppy, Battery Text Books:

1. Module I • • • • • • • • • • • • • • • Introduction to Computers- Peter Norton (TMH)

Peter Norton • s guide to upgrading and repairing PCs • Peter Norton (Tech Media)

2. Module II •••••••• Modern all About Hard Disk Drive • Lotia/Nair (BPB)

3. Module III ������������ Modern all About Printers � Lotia/Nair (BPB)

Modern all About MotherBoard � Lotia/Nair (BPB)

 \$\delta \delta \delt

Reference Books:

1. How a computer works • Ron White (QUE)

2. The New Peter Norton s Programming and Repairing PCs Peter Norton (BPB)

EM4B14����� Second Core Course �3

Aim of the course:

This course aims to give a strong background about microprocessor Intel 8085 and to develop skill in assembly level programming

Contact hours: 54

Course outline

Microprocessor Architecture and its operations, Memory, Input/ Output devices, Example of a microcomputer system, Logic devices for interfacing

Intel 8085 Microprocessor - Architecture and memory interfacing, SDK-85 memory system

Interfacing I/O Devices- basic interfacing concepts, interfacing output displays, interfacing input devices, memory-mapped I/O and peripheral I/O

The 8085 programming model, Instruction classification, Instruction, Data format and storage, Overview of Intel 8085 Instruction set

Intel 8085 Instructions- data transfer/copy operations, arithmetic operations, logic operations, branch operations, Writing assembly language programs, Debugging a program

Programming Techniques • Looping, Counting and Indexing, Additional data transfer and 16-bit arithmetic instructions, arithmetic operations related to memory, logic operations - rotate, compare, Dynamic debugging

Modul

Counters and Time Delays • illustrative programs • hexadecimal counter, modulo-ten counter, illustrative program for generating pulse waveforms, debugging counter and time delay programs

Stack and Subroutines, conditional call and return instructions, advanced subroutine concepts

The Intel 8085 Interrupts- vectored interrupts, restart as software instructions, additional I/O concepts and processes

Basic concepts in serial I/O, software-controlled asynchronous serial I/O, the Intel 8085 Serial I/O lines SOD and SID, hardware-controlled serial I/O using programmable chips

Text Book:

Microprocessor Architecture, Programming and Applications ����� Ramesh S. Gaonkar ������ (Penram International)

Reference Books

1. Fundamentals of Microprocessors and Microcomputers ������ B. Ram

(Dhanpatrai Publications)

EM4C08����� First Complementary Course � 4

DIFFERENTIAL EQUATIONS, GROUP THEORY AND LEGENDRE POLYNOMIAL

(Common with Mathematics for B.Sc. Programme - MP4C01)

EM4C09����� Second Complementary Course � 4

COMPUTER ORGANIZATION

Aim of the course:

This course aims to give a strong background in the field of Microprocessor 8085 and to expertise in assembly level programming

Contact hours: 54

Course outline

Functional units of a computer � input unit, memory unit, arithmetic and logic unit, output unit, control unit � Basic operational concepts, Bus structures Computer arithmetic � Adders � serial and parallel adders, Fast adders � carry look ahead adders, Multiplication � Booth algorithm, Division algorithms

Fundamental concepts- register transfers, performing an arithmetic or logic operation, fetching a word from memory, storing a word in memory, Execution of a complete instruction, Branch instructions, Hardwired control, Micro-programmed control

Input /Output Organization

Accessing I/O devices, Interrupts • Interrupt hardware, Enabling and disabling of Interrupts • Handling multiple devices, Buses • synchronous and asynchronous, Interface circuits-parallel port, serial port

Memory Organization

Memory systems • Basic concepts, Internal organization of memory chips, cache memory • mapping functions • direct mapping, associative mapping, set-associative mapping, Memory interleaving • hit rate and miss penalty, Virtual memory • organization, address translation

Text Book:

Computer Organization

Reference Book:

EM4B15����� Second Core Course Practical • 1

INTEL 8085 ASSEMBLY LANGUAGE PROGRAMMING LAB

Aim of the course:

To equip the student with a practical knowledge of Intel 8085 microprocessor programming, its interfacing and applications

Contact hours: 72

List of Experiments

- 1. Study of architecture of Intel 8085 microprocessor
- 2. Data Transfer Experiments
- 3. Addition of two 8-bit and 16-bit numbers

- 4. Addition of N 8-bit numbers
- 5. Subtraction of two 8-bit and 16-bit numbers
- 6. Multiplication of two 8-bit and 16-bit numbers
- 7. Division of two 8-bit numbers
- 8. Odd or Even Number
 9. Positive or Negative Number
- 10. Divisible or not11. Addition of two 8-bit and 16-bit BCD numbers
- 12. Subtraction of two BCD numbers
- 13. Searching of a number
- 14. Sorting in ascending and descending order
- 15. Largest and smallest number in a group
- 16. Multi-byte addition
- 17. Square root of a number
- 18. Factorial of a number
- 19. Hex Counter20. Decimal up/down counter
- 21. Modulo-ten counter
- 22. Square wave Generator
- 23. Traffic light Controller
- 24. Stepper motor Controller25. DAC and ADC Interfacing

https://103.251.43.46/CBCSS/ELECTRONICS/Electronics&CompMaint%28Syllabus%29.htm