First Semester Model Question Paper (C.B.C.S.) Examination Complementary Course I - (OPERATIONS RESEARCH)-Linear programming (For B.Sc. Mathematics Model II Programme)

Time: Three Hours
Maximum: 80 Marks

Part A

Brief answer questions. Answer any ten questions. Each question carries 2 marks.

1. Find the inner product of the vector $[2,3,4]^{\prime}$ and $[4,2,3]^{\prime}$
2. State Cauchy-Schwarz inequality in En.
3. Give a vector linearly independent to [1, 2]' in E2.
4. What are orthogonal vectors?
5. What is the euclidean norm of the vector [2,3, 4]'
6. Give an example of a set which is neither closed nor open.
7. What is the convex hull of the set $\mathrm{S}=\{\mathrm{X} 1 ; \mathrm{X} 2\}$
8. Define local minima and maxima
9. Give an example of a convex programming problem.
10. Define basic feasible solutions
11. Define a Linear Programming problem
12. What do you mean by Degeneracy in LPP

$$
(10 \times 2=20)
$$

Part B

Short Essay type questions. Answer any six questions. Each question carries $\mathbf{5}$ marks.
13. Determine whether the vector $[6,1,-6,2]$ is in the vector space generated by the vectors.

$$
[1,1,-1,1],[-1,0,1,1],[1,-1,-1,0]
$$

14. Find the inner product of the vectors $[2,-3,4]$ and $[4,-2,-3]$
15. Determine whether the following matrix is positive definite or not. $\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 4 & 8 \\ 2 & 8 & 4\end{array}\right]$
16. Determine whether the form $\mathrm{x}_{1}^{2}+2 \mathrm{x}_{2}^{2}-2 \mathrm{x}_{3}{ }^{2}-2 \mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{x}_{2} \mathrm{x}_{3}$ is positive definite or not.
17. Define
(a) General Mathematical programming Problem
(b) Convex Programming Problem
18. Solve graphically

Maximize $4 x_{1}+2 x_{2}$ subject to $x_{1}+x_{2} \leq 4, x_{1}=4, x_{1} \geq 0, x_{2} \geq 0$
19. Illustrate the relation between the set of all feasible solutions and vertices of S_{F}
20. Maximize $\mathrm{x} 1+2 \mathrm{x} 2$ subjet to $\mathrm{x} 1+3 \mathrm{x} 2 \leq 4, \mathrm{x} 1 \leq 4, \mathrm{x} 1 \geq 0, \mathrm{x} 2 \geq 0$ using simplex algorithm.
21. Minimize $2 \mathrm{x}_{1-} \mathrm{x}_{2}$ subject to $\mathrm{x}_{1}+\mathrm{x}_{2} \leq 4, \mathrm{x} 2 \geq 4, \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0$ using Big M Method.

$$
(6 \times 5=30)
$$

Part C
 Essay Type questions. Answer any two questions. Each question carries $\mathbf{1 5}$ marks.

22. Explain the different methods to find aa symmetric matrix is positive definite or not.
23. Maximize $5 x_{1}+3 x_{2}+x_{3}$ subject to $2 x_{1}+x_{2}+x_{3} \leq 3, x_{1} \leq 4, x_{1} \geq 0, x_{2} \geq 0$ using simplex algorithm
24. Solve Two Phase Simplex method :

Maximize $\mathrm{x}_{1}+\mathrm{x}_{2}$ subject to $7 \mathrm{x}_{1}-6 \mathrm{x}_{2} \leq 5,6 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 7,-3 \mathrm{x}_{1}+8 \mathrm{x}_{2} \leq 6, \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0$
25. Solve graphically

Minimize $-5 \mathrm{x}_{1}-3 \mathrm{x}_{2}$ subject to $\mathrm{x}_{1}+\mathrm{x}_{2} \leq 2$, to $5 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10,3 \mathrm{x}_{1}+8 \mathrm{x}_{2} \leq 12,, \mathrm{x} 1 \geq 0, \mathrm{x} 2 \geq 0$

