MODEL QUESTION PAPER

SEMESTER I

PC 5, MT 01C05,

Time: $\mathbf{3} \mathbf{h r}$

COMPLEX ANALYSIS

Part A. Short Answer questions

Answer any five questions. Each question has 1 weight.
1 Suppose $\mathbf{f}(\mathbf{x})$ is analytic and satisfies the condition $\left|f^{2}(z)-1\right|<1$ in a region $\quad \Omega$. Show that either real part of $f(z)>0$ or real part of $f(z)<0$ throughout Ω

2If $T_{1}(Z)=\frac{Z+2}{Z+3}$ and $T_{2}(Z)=\frac{Z}{Z+1}$ find $T_{1}^{-1} T_{2}(Z)$
3 Compute $\int_{\gamma} x d x$ where γ is the directed line segment from 0 to $1+\mathrm{i}$
4If γ be a closed curve lies inside a circle then prove that $n(\gamma, a)=0$ for every point 'a 'outside the
Circle

5If $f(z)$ is analytic and non constant in a region Ω then prove that $|f(z)|$ has no maximum value in Ω 6Show that the number of zeros of $\mathrm{f}(\mathrm{z})$ inside the circle γ is $\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z$

7How many zeros of $z^{7}-2 z^{5}+6 z^{3}-z+1$ lie in $|z|<1$
8Show by Rouche's theorem that the n roots of $e^{z}=a z^{n}$ lie in $|z|<1$ where a>e

Part B. Short Essay questions

Answer any five questions. Each question has 2 weights.
9 Prove that cross ratio is invariant under a linear transformation
10Prove that conformal mappings are angle preserving
11 Prove that an arc γ,where length of arc $\mathrm{z}=\mathrm{z}(\mathrm{t}), a \leq t \leq b$ is rectifiable iff real and imaginary part of $z(t)$ are of bounded variation

12 State and prove fundamental theorem of algebra
13State and prove Weierstrass theorem

14 If $f(z)$ is analytic at Z_{o} and $f^{\prime}\left(Z_{0}\right)$ is $\neq 0$, then prove that $f(z)$ maps a neighbourhood of Z_{0}
conformally and topologically onto a region.
15 Evaluate $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} \mathrm{~d} \theta$

16 If ' u ' is harmonic in Ω then prove that $f(z)=u_{X}-i u_{Y}$ is analytic in Ω

Part C.Long Essay Questions

Answer any three questions. Each question has 5 weights.

17a) If $w=f(z)$ is angle preserving and $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous then prove that $f(z)$ is analytic
b) Prove that the cross ratio of $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real iff. the four points lie on a circle or on a straight line.

18a) Find the linear transformation which carries the circles $|z|=2$ into $o z+1 \mid=1$, the point -2 into the origin and the origin into i.
b) Prove that the line integral $\int_{\gamma} p d x+q d y d e f i n e d$ in Ω depends only in the endpoints of γ iff. there exists a function $u(x, y)$ in Ω such that $\frac{\partial u}{\partial x}=$ pand $\frac{\partial u}{\partial y}=q$

19 a) State and prove Cauchy's Theorem for a disc.
b) State and prove Cauchy's Theorem for a rectangle

20 a) State and prove Taylor's Theorem.
b) If $\mathrm{f}(\mathrm{z})$ is analytic in a connected domain Ω then prove that either $\mathrm{f}(\mathrm{z})$ vanishes identically in Ω or $\mathrm{f}(\mathrm{z})$ can never vanish together with its derivatives.

21 a)Prove that a region is simply connected iff. $\mathrm{n}(\gamma, \mathrm{a})=0$ for every cycle γ in Ω and for every ' a ’ not in Ω
b) State and prove Cauchy's Residue Theorem

22 a)Let $\mathrm{f}(\mathrm{z})$ be meromorphic in Ω and a_{j} and b_{j} represent respectively the zeros and poles of $\mathrm{f}(\mathrm{z})$ in Ω. Then show that $\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j} n\left(\gamma, a_{j}\right)-\sum_{k} n\left(\gamma, b_{k}\right)$ for every cycle $\gamma \square 0(\bmod \Omega)$ such that γ does not pass through a_{j} and $b_{k .}$.
b) State and prove Poisson's Formula.

