MSc. Mathematics Degree (MGU-CSS-PG) Examination MODEL QUESTION PAPER

SEMESTER I

COMPLEX ANALYSIS

Time: 3 hr

PC 5, MT 01C05,

Max weight: 30

Part A. Short Answer questions

Answer any five questions. Each question has 1 weight.

1 Suppose f(x) is analytic and satisfies the condition $|f^2(z)-1| < 1$ in a region Ω . Show that either real part of f(z)>0 or real part of f(z)<0 throughout Ω

2If $T_1(Z) = \frac{Z+2}{Z+3}$ and $T_2(Z) = \frac{Z}{Z+1}$ find $T_1^{-1}T_2(Z)$

3 Compute $\int x dx$ where γ is the directed line segment from 0 to 1+i

4If γ be a closed curve lies inside a circle then prove that $n(\gamma, a) = 0$ for every point 'a 'outside the

Circle

5If f(z) is analytic and non constant in a region Ω then prove that |f(z)| has no maximum value in Ω

6Show that the number of zeros of f(z) inside the circle γ is $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$

7How many zeros of $z^7 - 2z^5 + 6z^3 - z + 1$ lie in |z| < 1

8Show by Rouche's theorem that the n roots of $e^z = az^n$ lie in |z| < 1 where a>e

Part B. Short Essay questions

Answer any five questions. Each question has 2 weights.

9 Prove that cross ratio is invariant under a linear transformation

10Prove that conformal mappings are angle preserving

11 Prove that an arc γ , where length of arc z=z(t), $a \le t \le b$ is rectifiable iff real and

imaginary part of z(t) are of bounded variation

12 State and prove fundamental theorem of algebra

14 If f(z) is analytic at Z₀ and f '(Z₀) is \neq 0, then prove that f(z) maps a neighbourhood of Z₀

conformally and topologically onto a region.

15 Evaluate
$$\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$$

16 If 'u' is harmonic in Ω then prove that f(z) = u_X - i u_Y is analytic in Ω

Part C.Long Essay Questions

Answer any three questions. Each question has 5 weights.

17a) If w = f(z) is angle preserving and $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous then prove that f(z) is analytic

b) Prove that the cross ratio of (z_1, z_2, z_3, z_4) is real iff. the four points lie on a circle or on a

straight line.

18a) Find the linear transformation which carries the circles |z| = 2 int o|z+1| = 1, the point -2 into the

origin and the origin into i.

b) Prove that the line integral $\int_{\gamma} pdx + qdy$ defined in Ω depends only in the endpoints of γ iff.

there exists a function u(x, y) in Ω such that $\frac{\partial u}{\partial x} = pand \frac{\partial u}{\partial y} = q$

- 19 a) State and prove Cauchy's Theorem for a disc.
 - b) State and prove Cauchy's Theorem for a rectangle
- 20 a) State and prove Taylor's Theorem.

b) If f(z) is analytic in a connected domain Ω then prove that either f(z) vanishes identically in Ω or f(z) can never vanish together with its derivatives.

21 a)Prove that a region is simply connected iff. $n(\gamma, a) = 0$ for every cycle γ in Ω and for every 'a'

not in Ω

b) State and prove Cauchy's Residue Theorem

22 a)Let f(z) be meromorphic in Ω and a_j and b_j represent respectively the zeros and poles of f(z) in Ω . Then show that $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j} n(\gamma, a_j) - \sum_{k} n(\gamma, b_k) \text{ for every cycle } \gamma \quad 0 \pmod{\Omega} \text{ such that } \gamma \text{ does not pass through } a_j \text{ and } b_k.$

b) State and prove Poisson's Formula.

* * * * *