BCA SEM I -COMPLEMENTARY I-MATHEMATICS

FOR BCA OFFCAMPUS STREAM

1 A factor can be considered to be an underlying latent variable:
(a) on which people differ
(b) that is explained by unknown variables
(c) that cannot be defined
(d) that is influenced by observed variables
(e) none of these

2 Variables that are orthogonal are:
(a) moderately correlated with each other
(b) perfectly related to each other
(c) rotated
(d) totally unrelated to each other
(e) none of these

3 Factor analysis is concerned with:
(a) analysis of correlation matrices
(b) correlating mean values
(c) frequency counts
(d) abstract concepts
(e) none of the above

4 Factor analysis requires that variables:
(a) Are measured at nominal level
(b) Are abstract concepts
(c) Are not related to each other
(d) Are related to each other
(e) Are standardized

5 The decision about how many factors to retain is based on:
(a) personal choice
(b) Kaiser's rule
(c) Scree test
(d) Both (a) and (c)
(e) Both (b) and (c)

6) The unrotated matrix is rotated because:
(a) The calculations are easier
(b) More factors are extracted
(c) Rotated factors are significant
(d) Interpretation is easier
(e) all of these
7) Kaiser's rule says:
(a) Select all factors where $\mathrm{p}<.5$
(b) Select factors with eigenvalues that add up to 1
(c) Select factors with eigenvalues 1 and above
(d) Select the factor with the biggest Eigen value
(e) None of the above

8. The problem statement, all variables and given/known data

1. If A is a real symmetric matrix, then there is a diagonal matrix D and an orthogonal matrix P so that $D=P T A P$.
a. True
b. False
2. Given that λi and λj are distinct eigenvalues of the real symmetric matrix A and that v1 and v2 are the respective eigenvectors associates with these values, then v1 and v2 are orthogonal.
a. True
b. False
10.If $\mathrm{T}(\theta)$ is a rotation of the Euclidean plane 2 counterclockwise through an angle θ, then T can be represented by an orthogonal matrix P whose eigenvalues are $\lambda 1=$ 1 and $\lambda 2=-1$.
a. True
b. False
3. If A and B represent the same linear operator $T: U \rightarrow U$, then they have the same eigenvalues.
a. True
b. False
4. If A and B represent the same linear operator $T: U \rightarrow U$, then they have the same eigenvectors.
a. True
b. False
5. If A and B have the same eigenvalues, then they are similar matrices.
a. True
b. False
6. Which of the following statements is not true?
a. Similar matrices A and B have exactly the same determinant.
b. Similar matrices A and B have exactly the same eigenvalues.
c. Similar matrices A and B have the same characteristic polynomial.
d. Similar matrices A and B have exactly the same eigenvectors.
e. none of the above
7. Let the $\mathrm{n} \times \mathrm{n}$ matrix A have eigenvalues $\lambda 1, \lambda 2 \ldots \lambda \mathrm{n}$ (not necessarily distinct). Then $\operatorname{det}(A)=\lambda 1 \lambda 2 \ldots \lambda n$.
a. True
b. False
8. Every real matrix A with eigenvalues as in problem 8 is similar to the diagonal matrix $D=\operatorname{diag}[\lambda 1, \lambda 2, \ldots \lambda n]$.
a. True
b. False
9. Eigenvectors corresponding to distinct eigenvalues for any $n \times n$ matrix A are always linearly independent.
a. True
b. False
10. Which method of analysis does not classify variables as dependent or independent?
a. regression analysis
b. discriminant analysis
c. analysis of variance
d. factor analysis
11. Factor analysis is $a(n) \quad$ in that the entire set of interdependent relationships is examined.
a. KMO measure of sampling adequacy
b. orthogonal procedure
c. interdependence technique
d. varimax procedure
12. Factor analysis can be used in which of the following circumstances?
a. To identify underlying dimensions, or factors, that explain the correlations among a set of variables.
b. To identify a new, smaller set of uncorrelated variables to replace the original set of correlated variables in subsequent multivariate analysis.
c. To identify a smaller set of salient variables from a larger set for use in subsequent multivariate analysis.
d. All are correct circumstances.
21.___ are simple correlations between the variables and the factors.
a. Factor scores
b. Factor loadings
c. Correlation loadings
d. Both a and b are correct
22.Factor analysis may not be appropriate in all of the following situations except:
a. a small value for Barlett's test of sphericity is found
b. small values of the KMO statistic are found
c. the variables are not correlated
d. the variables are correlated
13. A principal components analysis was run and the following eigenvalue results were obtained: 2.731, $2.218, .442, .341, .183, .085$. How many factors would you retain using the eigenvalues to determine the number of factors?
a. 1
b. 2
c. 4
d. 6
24.__ should be used when factors in the population are likely to be strongly correlated.
a. Orthogonal rotation
b. The varimax procedure
c. Oblique rotation
d. None of the above
