# MAHATMA GANDHI UNIVERSITY <br> SCHOOL OF DISTANCE EDUCATION <br> (MGU - CBCSS - UG - SDE 2012) <br> B.Sc Computer Science 

Semester VI<br>Core-25 : Computer Graphics and Multimedia Multiple Choice Questions.

1. Expansion of CRT is $\qquad$ -.
A. Cathode Ray Tube.
B. Computer Related Tube.
C. Component Related Tools.
D. Common Reflection Tube.

ANSWER: A
2. The operations of most $\qquad$ is based on the Standard Cathode ray tubes.
A. scanners.
B. video monitors.
C. printers.
D. card readers.

ANSWER: B
3. A beam of electrons emitted by an electron gun is also called as $\qquad$ .
A. electric rays
B. magnetic rays.
C. cathode rays.
D. infra-red rays.

ANSWER: C
4. Expansion of DDA is $\qquad$ .
A. Device Display Analyzer.
B. Digital Differential Analyzer.
C. Digital Device Analyzer
D. Digital Display Analyzer.

ANSWER: B
5. Random scan displays are designed to draw all component lines at of a picture $\qquad$ times each second.
A. 20 to 40 .
B. 30 to 60 .
C. 40 to 70 .
D. 20 to 50 .

ANSWER: B
6. In beam penetration method, $\qquad$ layers of phosphor are usually used.
A. 1
B. 2
C. 3
D. 4

ANSWER: B
7. In beam penetration method, $\qquad$ and $\qquad$ layers of phosphor are usually used.
A. red and green.
B. blue and green.
C. yellow and green
D. orange and green.

ANSWER: A
8. VDU is a $\qquad$ device
A. processing.
B. input.
C. peripheral.
D. hardware.

ANSWER: C
9. The operation of the most video monitors is based on the $\qquad$ CRT.
A. static.
B. dynamic.
C. standard.
D. pervasive.

ANSWER: C
10. In cathode ray tube, a beam of electrons is emitted $\qquad$ .
A. from the base.
B. by a focusing system.
C. by an electron gun.
D. by deflection plates

ANSWER: C
11. The negatively charged electrons inside the CRT are then accelerated towards the $\qquad$ .
A. phosphor coating
B. electron gun.
C. Base
D. Electron beam object

ANSWER: A
12. The magnetic field produced by each pair of coils results in $\qquad$ deflection force.
A. transverse.
B. magnetic.
C. slopping.
D. repulsive.

ANSWER: A
13. A major difference between phosphors is their $\qquad$ .
A. permanent state.
B. persistence.
C. feebleness.
D. magnetic deflection.

ANSWER: B
14. The diagonal screen dimension of a personal computer system is given as the sizes varying from about
$\qquad$ inches or more.
A. 12 to 21 .
B. 27 to 12 .
C. 0 to 27 .
D. 4 to 12 .

ANSWER: A
15. Picture definition is stored in $\qquad$ buffer area in memory.
A. frame.
B. outer.
C. refresh.
D. restore.

ANSWER: A
16. The rate at which the picture is redrawn on the screen is called $\qquad$ rate.
A. buffer.
B. refresh.
C. drawn.
D. delete.

ANSWER: B
17. A system with 24 bites per pixel \& a screen resolution of 1024 by 1024
requires $\qquad$ mega byte of storage for frame buffer
A. 9 .
B. 7 .
C. 3 .
D. 2 .

ANSWER: C
18. In a black and white system $\qquad$ per pixel is needed to control the intensity of screen positions.
A. 0 bit.
B. 1 bit.
C. 2 bits.
D. 3 bits.

ANSWER: B
19. In a high quality system $\qquad$ bits per pixel is needed to control the intensity of screen positions.
A. 8 .
B. 12 .
C. 16 .
D. 24 .

ANSWER: D
20. On a black and white system with one bit per pixel, the frame buffer is commonly called as
A. pixmap.
B. pelmap
C. bitsmap.
D. bitmap.

ANSWER: D
21. For systems with multiple bits per pixel, the frame buffer is commonly called as $\qquad$ .
A. pixmap.
B. pelmap
C. bitsmap.
D. bitmap

ANSWER: A
22. Refresh rate near to $\qquad$ frames per second is an effective technique for avoiding flicker.
A. 60 .
B. 45 .
C. 30
D. 15 .

ANSWER: A
23. Random scan monitors draw a picture $\qquad$ at a time.
A. one pixel.
B. two pixel.
C. one line.
D. two line.

ANSWER: C
24. In raster scan system the $\qquad$ beam is swept across screen.
A. electron.
B. magnetic
C. electro
D. electrothermal

ANSWER: A
25. In raster scan system the electron beam is swept across screen from $\qquad$ .
A. right to left.
B. top to bottom.
C. bottom to top.
D. side to side.

ANSWER: B
26. A CRT monitor displays color picture by using a combination of phosphor that emits light of color
A. same.
B. different.
C. many.
D. Only one.

ANSWER: B
27. Shadow mask methods are commonly used in raster scan system including $\qquad$ .
A. monitor.
B. beam penetration method.
C. random scan system.
D. color tv

ANSWER: D
28. In flat panel display the emissive displays are devices that converts electric energy into $\qquad$ .
A. obscurity
B. stimulating energy.
C. light energy.
D. non emitting energy.

ANSWER: C
29. In liquid crystal display the flat panel device is referred to as a $\qquad$ LCD.
A. matrix.
B. passive.
C. active.
D. submissive.

ANSWER: B
30. The refresh buffer also called a $\qquad$ buffer.
A. frame.
B. element.
C. resolution.
D. bitmap.

ANSWER: A
31. Each screen point is referred to as a $\qquad$ .
A. point.
B. pixel.
C. position.
D. element.

ANSWER: B
32. Refreshing on raster-scan displays is carried out at the rate of 60 to 80 $\qquad$ per second.
A. points.
B. pixels
C. positions
D. frames.

ANSWER: D
33. The raster-scan systems, each frame is displayed in two passes using an $\qquad$ procedure.
A. interlaced refresh.
B. refresh.
C. providing.
D. vector-displays.

ANSWER: A
34. The magnetic field produced by each pair of coils results in a $\qquad$ a. transverse deflection force.
A. transverse deflection force.
B. generic field
C. electron beam.
D. horizontal deflection.

ANSWER: A
35. A property of video monitors is $\qquad$ .
A. length.
B. centimeter
C. direction
D. aspect ratio.

ANSWER: D
36. Intensity of the electron beam is controlled by setting voltage levels on the $\qquad$ .
A. control panel.
B. electron gun.
C. connector pins.
D. control grid.

ANSWER: D
37. The $\qquad$ emits a small spot of light at each position contacted by the electron beam.
A. electron gun.
B. control grid.
C. phosphor
D. cathode.

ANSWER: C
38. The maximum number of points that can be displayed without overlap on a CRT is referred to as its $\qquad$ .
A. persistence.
B. non persistence.
C. resolution
D. distribution.

ANSWER: C
39. Sterio scopic viewing is also a part in $\qquad$ .
A. virtual reality system.
B. essential system
C. Actual reality system.
D. Implicit system.

ANSWER: A
40. The primary output devices in a graphics system is a $\qquad$ .
A. video monitor.
B. video display devices.
C. cathode ray tube.
D. deflection CRT.

ANSWER: A
41. The focusing system in a CRT is needed to force the electron beam to converge into a $\qquad$ as it strikes the phosphor.
A. large spot.
B. small spot.
C. double spot
D. spot.

ANSWER: B
42. A shadow-mask CRT has $\qquad$ phosphor color dots at each pixel position.
A. five.
B. four
C. three
D. two.

ANSWER: C
43. The $\qquad$ shadow-mask method, is commonly used in color CRT systems.
A. delta-delta.
B. beta-beta.
C. delta-beta.
D. alpha-alpha.

ANSWER: A
44. Color CRTs in graphics systems are designed as $\qquad$ .
A. CRT monitors.
B. RGB monitors.
C. DVST monitors.
D. color monitors.

ANSWER: B
45. DVST stands for $\qquad$ .
A. Device View Storage Tube.
B. Direct View Space Tube.
C. Direct View Storage Tube.
D. Device View Space Tube.

ANSWER: C
46. The emissive displays are device that convert electrical energy into $\qquad$ .
A. light.
B. image
C. pixel
D. colors

ANSWER: A
47. The plasma is also called as $\qquad$ displays.
A. image.
B. glass
C. gas-discharge.
D. glass-discharge

ANSWER: C
48. A beam of slow electrons excites only the outer $\qquad$ layer.
A. blue.
B. green
C. white
D. red

ANSWER: D
49. A beam of very fast electrons penetrates through the red layer and excites the inner $\qquad$ layer.
A. blue.
B. green
C. white
D. red

ANSWER: B
50. LED stands for $\qquad$ .
A. Light Emitted Display.
B. Light Emitting Display.
C. Light Emitting Diode.
D. Light Emit Diode.

ANSWER: C
51. BSP Stands for $\qquad$ .
A. Bit Space-Partitioning.
B. Binary Space- Partitioning.
C. Bit Space- positioning.
D. Binary Space- Positioning.

ANSWER: B
52. The simplest model for a light emitter is $\qquad$ .
A. light source.
B. open source.
C. data source.
D. point source.

ANSWER: D
53. $\qquad$ algorithm are broadly classified according to whether they deal with object definitions directly or with their projected images.
A. Line clipping.
B. Simple DDA.
C. Visible surface detection.
D. Midpoint algorithm.

ANSWER: C
54. $\qquad$ is applied in an object by pre positioning along a straight line.
A. Translation.
B. Rotation
C. Scaling
D. Shearing

ANSWER: A
55. A $\qquad$ is a transformation that produces a mirror image of an object.
A. reflection.
B. shear
C. translation
D. rotation

ANSWER: A
56. $\qquad$ generally refers to any time sequence of visual changes in a scene.
A. Computer animation.
B. Graphics
C. Visualization.
D. Frame work.

ANSWER: A
57. A world coordinate area selected for display is called as $\qquad$ .
A. window.
B. Viewport
C. window-to-viewport.
D. Viewing transformation.

ANSWER: A
58. One of the oldest and most popular line clipping procedure is $\qquad$ .
A. Liang-Barsky Line Clipping.
B. Nicholl-Lee-Nicholl Line Clipping.
C. Cohen-Sutherland Line Clipping.
D. Line Clipping using Nonrectangular Clip window.

ANSWER: C
59. A commonly used image space approach to detect visible surface is $\qquad$ .
A. buffer depth method.
B. surface rendering method.
C. polygon surface method.
D. depth buffer method.

ANSWER: D
60. An illumination model is also called as $\qquad$ .
A. lighting model.
B. surface model.
C. shading model.
D. rendering model.

ANSWER: A
61. The scattered light is called as $\qquad$ .
A. specular reflection.
B. source light.
C. ambient light.
D. defuse reflection.

ANSWER: D
62. The area subdivision method takes advantage of area coherence in a scene by location of those view areas that represent the part of a $\qquad$ .
A. double surface.
B. single surface.
C. triple surface.
D. area surface.
63. Orthographic projection that display more than one face of an object is called $\qquad$ .
A. axonometric orthographic projection
B. orthographic axonometric projection
C. projection axonometric orthographic.
D. projection orthographic axonometric.

ANSWER: A
64. Spotlights are used to control the amount of light emitted within a cone with apex at $\qquad$ source position.
A. line.
B. object
C. point
D. out

ANSWER: C
65. An area on a display device to which a window is mapped is called as $\qquad$ .
A. view map. .
B. path map.
C. view port.
D. path graph.

ANSWER: C
66. The scaling transformation alters the size of an $\qquad$ .
A. vector.
B. edge
C. side
D. object

ANSWER: D
67. The set of unit vectors is called $\qquad$ .
A. vector basis.
B. normal basis.
C. orthogonal basis.
D. base vectors.

ANSWER: B
68. A matrix with a single row or a single column represents a $\qquad$ .
A. vector.
B. square
C. row vector.
D. column vector.

ANSWER: A
69. The matrix with same number of rows and columns is called as $\qquad$ .
A. square matrix.
B. row matrix.
C. column matrix.
D. row, column matrix.

ANSWER: A
70. Vector V is called the $\qquad$ -.
A. world coordinate.
B. view up vector.
C. fixed-size.
D. direction

ANSWER: B
71. The region against which an object is to be clipped is called as $\qquad$ .
A. world coordinate.
B. view port
C. clip window
D. boundaries

ANSWER: C
72. The two-dimensional viewing transformation is simply referred to as the window-to-viewport transformation or the $\qquad$ .
A. viewing pipeline.
B. transformation.
C. windowing transformation.
D. world coordinate.

ANSWER: C
73. A standard method for fitting a function to a set of data points is called as $\qquad$ algorithm.
A. Fitting.
B. straight-line
C. least-squares
D. DDA

ANSWER: C
74. The three color parameters in HLS color model are $\qquad$ .
A. hue, lightness and saturation.
B. height, lightness and saturation.
C. hue, light and saturation.
D. hue, lightness and scaling.

ANSWER: A
75. The depth-buffer method is also called as $\qquad$ .
A. A-buffer.
B. C-buffer
C. Z-buffer
D. W-buffer.

ANSWER: C
76. CSG stands for
A. Constructed Solid Geometry.
B. Concatenate Solid Geometry.
C. Construct Solid Geometry.
D. Constructive Solid Geometry.

ANSWER: D
77. The most straight forward method for defining a motion square is
A. higher.
B. complete
C. indirect
D. direct

ANSWER: D
78. One of the most popular methods for finding roots of nonlinear equations is the $\qquad$ algorithm.
A. raphson.
B. Newton
C. root
D. newton-raphson.

ANSWER: D
79. curve-fitting techniques are often used to specify the animation paths between $\qquad$ .
A. two elements.
B. key frames.
C. two positions.
D. key elements.

ANSWER: B
80. $\qquad$ description is a typical task in an animation specification.
A. Vector.
B. Scene
C. Frame
D. Action

ANSWER: B
81. $\qquad$ system allows object motion characteristics to be specified as part of the object definitions.
A. Parametric.
B. Specialized
C. Adjustable
D. Parameterized

ANSWER: D
82. We can also animate object along 2D motion paths using the $\qquad$ transformations.
A. table-color.
B. color-table
C. coordinate origin.
D. fixed point

ANSWER: B
83. Constant-intensity shading is also called as $\qquad$ shading.
A. intensity.
B. constant
C. flat
D. polygon

ANSWER: C
84. A fast and simple method for rendering an object with polygon surfaces is called as shading.
A. intensity.
B. constant
C. constant-intensity.
D. polygon

ANSWER: C
85. Procedure for determining visibility of object edges are referred to as $\qquad$ visibility methods.
A. surface.
B. window
C. wireframe
D. background

ANSWER: C
86. A drawback of the depth-buffer method is that it can only find one visible surface at each
$\qquad$
A. depth.
B. visible
C. display
D. pixel

ANSWER: D
87. The A-buffer has two fields, the depth field and $\qquad$ field.
A. surface.
B. accumulate
C. intensity
D. pixel

ANSWER: C
88. The A-buffer has two fields, the $\qquad$ field and intensity field.
A. surface.
B. accumulate
C. depth
D. pixel

ANSWER: C
89. The parallelepiped is mapped into the unit cube in a normalized view volume called the $\qquad$ system.
A. normalized coordinate projection.
B. normalized coordinate.
C. coordinate projection.
D. normalized projection coordinate.

ANSWER: D
90. The emissive displays are devices that convert $\qquad$ energy to light
A. electrical.
B. magnetic
C. mechanical
D. wind

ANSWER: A
91. The emissive displays are devices that convert electrical energy to $\qquad$ .
A. light.
B. magnetic
C. mechanical
D. wind

ANSWER: A
92. The non-emissive displays are devices that convert $\qquad$ to graphics pattern.
A. sunlight.
B. magnetic
C. mechanical
D. wind

ANSWER: A
93. The non-emissive displays are devices that convert sunlight or light from other sources to $\qquad$ .
A. graphics pattern.
B. magnetic
C. mechanical
D. wind

ANSWER: A
94. $\qquad$ is also called as gas-discharge displays.
A. LED.
B. Plasma panel.
C. LCD
D. CRT

ANSWER: B
95. RGB color system with 24 bits of storage is also called as $\qquad$ color system.
A. false.
B. full
C. half
D. finite

ANSWER: B
96. A three dimensional reflection can be performed relative to a selected reflection axis or with respect to a selected $\qquad$ _.
A. rotations.
B. reflection plane
C. matrix form
D. edges

ANSWER: B
97. $\qquad$ modeling packages often provide a number of construction techniques.
A. scale.
B. solid
C. view
D. coordinate

ANSWER: B
98. $\qquad$ representations are useful for constructing 3D objects that possess
translational, rotations or other symmetries.
A. buffer.
B. periodic
C. sweep
D. spline

ANSWER: C
99. The primary output device in a graphics system is $\qquad$ .
A. joy stick.
B. light pen
C. key board.
D. Monitor

ANSWER: D
100. The operation of most video monitors is based on the standard $\qquad$ .
A. cathode ray device.
B. cathode device
C. cathode ray tube.
D. cathode rode.

ANSWER: C
101. Spots of $\qquad$ are produced on the screen by the transfer of the CT beam energy to the phosphor.
A. sound.
B. energy
C. light
D. platelet

ANSWER: C
102. Proper deflection amounts are attained by adjusting the $\qquad$ through the coils.
A. current.
B. heat
C. intensity
D. voltage

ANSWER: A
103. The most common types of graphics monitor employing a CRT is the $\qquad$ scan.
A. raster.
B. random
C. CRT
D. electron

ANSWER: A
104. The term $\qquad$ refers to the total screen area.
A. screen.
B. gun
C. frame
D. pixel

ANSWER: C
105. The number of bits per pixel in the frame buffer is called $\qquad$ buffer area.
A. width of the buffer.
B. depth of the buffer area.
C. height of the buffer area.
D. color of the buffer area.

ANSWER: B
106. At the end of scan line, the electron beam returns to the $\qquad$ side of the screen.
A. up.
B. bottom
C. right
D. left

ANSWER: D
107. Refresh rates are described in units of $\qquad$ .
A. pixel.
B. meter
C. hertz
D. cubic

ANSWER: C
108. After refreshing each scan line is called the $\qquad$ .
A. vertical retrace.
B. horizontal retrace.
C. interlace
D. buffer line.

ANSWER: B
109. Example of a random-scan display is $\qquad$ .
A. pen plotter.
B. mouse
C. keyboard
D. printer

ANSWER: A
110. Refresh $\qquad$ depends on the number of times to be displayed
A. rate.
B. times
C. pixel
D. system

ANSWER: A
111. Refresh display file is called the $\qquad$ .
A. display unit.
B. display list.
C. display processor.
D. display file

ANSWER: A
112. $\qquad$ ball is a two dimensional positioning device.
A. Mouse.
B. Track
C. Space
D. Thumb

ANSWER: B
113. The LEDs in touch panel operate at IR frequencies, so that the light is $\qquad$ to a user.
A. visible.
B. not visible
C. partially visible.
D. blurred

ANSWER: B
114. A light pen activated with a $\qquad$ .
A. button.
B. switch
C. pointer
D. button switch.

ANSWER: D
115. $\qquad$ scanner with a resolution of 600 dots per inch.
A. Desktop full-color.
B. Flatbed
C. Drum
D. Color

ANSWER: B
116. Input devices used in particular applications are $\qquad$ .
A. trackball.
B. space ball
C. joystick
D. data gloves

ANSWER: D
117. A/An $\qquad$ Device is any device that provides information, which is sent to the CPU.
A. Input.
B. Output
C. CPU
D. Memory

ANSWER: A
118. $\qquad$ tablets use sound waves to detect a stylus position
A. Acoustic or Sonic.
B. Sonic or Data.
C. Data \& Acoustic
D. Graphic or data

ANSWER: A
119. Buttons and switches are often used to input $\qquad$ -
A. numbers.
B. inputs
C. predefined Functions
D. values

ANSWER: C
120. Isometric joystick have $\qquad$ stick.
A. movable.
B. partial movable.
C. non-movable.
D. static

ANSWER: C
121. To be able to select positions in any screen area with a light pen, we must have some intensity assigned to each screen pixel.
A. zero.
B. one
C. non-zero
D. none

ANSWER: C
122. $\qquad$ representations are useful for constructing 3D objects that possess translational, rotations or other symmetries.
A. Buffer.
B. Periodic
C. Sweep
D. Spline

ANSWER: C
123. $\qquad$ are common devices for entering scalar values.
A. Dials.
B. Keyboards
C. Mouse
D. Joystick

ANSWER: A
124. What is the latest write-once optical storage media?
A. Digital paper.
B. Magneto-optical disk.
C. WORM disk.
D. CD-ROM disk.

ANSWER: D
125. $\qquad$ are used to measure to dial rotations.
A. Spectrometer.
B. Voltmeter
C. Potentiometer
D. Ammeter

ANSWER: C
126. Digital devices are $\qquad$ .
A. digital clock.
B. automobile speed meter.
C. clock with a dial and two hands.
D. all of them.

ANSWER: A
127. An output device that uses words or messages recorded on a magnetic medium to produce audio response is $\qquad$ .
A. magnetic tape.
B. voice response unit.
C. voice recognition unit.
D. voice band.

ANSWER: B
128. $\qquad$ procedure accepts the coordinates of an inter point.
A. Scan fill.
B. Poly fill.
C. Boundary fill.
D. Area fill

ANSWER: C
129. $\qquad$ is applied to regions by displaying sets of parallel lines.
A. Line fill.
B. Hatch fill
C. Solid fill.
D. Empty fill.

ANSWER: B
130. Changes in orientation, size and shape are accomplished with $\qquad$ .
A. geometric transformation.
B. translation
C. antialiasing
D. transposition

ANSWER: A
131. $\qquad$ is applied to an object by repositioning it along a straight line path from one coordinate location to another.
A. Rotation.
B. Scaling
C. Translation
D. Transformation

ANSWER: C
132. The translation distance pair (tx, ty) is called $\qquad$ .
A. sector shift.
B. shift vector.
C. matrix vector.
D. coordinate vector

ANSWER: B
133. The applications of the $\qquad$ mouse include virtual reality, CAD , animation.
A. X
B. Optical
C. Optomechanical
D. Z

ANSWER: D
134. Space ball is used for $\qquad$ dimensional positioning.
A. 2 .
B. 3
C. 1
D. 1 and 2 .

ANSWER: B
135. Offline device is a/an $\qquad$ .
A. device which is not connected to CPU.
B. device which is connected to CPU
C. direct access storage device
D. I/O device.

ANSWER: A
136. The Z mouse features three button, $\qquad$ underneath.
A. mouse ball.
B. thumbwheel
C. underwheel
D. trackball

ANSWER: A
137. The Z mouse features $\qquad$ buttons.
A. 2 .
B. 3
C. 4
D. 5

ANSWER: B
138. The Z mouse features three button, mouse ball underneath, $\qquad$ on the side.
A. thumbwheel.
B. mouse ball
C. trackball
D. underwheel

ANSWER: A
139. Joystick consist of $\qquad$
A. stick.
B. ball
C. wheel
D. ball

ANSWER: A
140. $\qquad$ transformation alters the size of an object.
A. Rotation.
B. Scaling
C. Translation
D. Transferring

ANSWER: B
141. Uniform scaling is produced that maintains relative object $\qquad$ .
A. shape.
B. vector
C. scalar
D. proportions

ANSWER: D
142. The location of the scaled object can be controlled by choosing a position called $\qquad$ .
A. vector position.
B. scalar position.
C. variable point.
D. fixed point

ANSWER: D
143. Unequal values of sx and sy results in $\qquad$ scaling.
A. integral.
B. differential
C. same
D. different

ANSWER: B
144. Uniform scaling of a circle is simple done by adjusting the $\qquad$ .
A. side.
B. radius
C. circumference
D. area

ANSWER: B
145. $\qquad$ is obtained by calculating the matrix product of individual transformations.
A. Matrix transformation.
B. Finite transformation matrix.
C. Composite transformation matrix.
D. Infinite transformation matrix.

ANSWER: C
146. The world coordinates area selected for display is called $\qquad$ .
A. window.
B. glow
C. view
D. scene

ANSWER: A
147. An area on the display device to which a window is mapped is called $\qquad$ .
A. viewport.
B. glow
C. view
D. scene

ANSWER: A
148. The mapping of a part of a world coordinate scene to a device coordinate is referred to as

[^0]149. The area of a picture that is selected for viewing is called $\qquad$ .
A. window.
B. glow
C. view
D. scene

ANSWER: A
150. Translation is a $\qquad$ body transformation that moves objects without deformation.
A. Rigid.
B. Fixed
C. Flexible
D. Single

ANSWER: A
151. $\qquad$ is a rigid body transformation that moves objects without deformation.
A. Rotation.
B. Scaling
C. Translation
D. Transformation

ANSWER: C
152. A two dimensional $\qquad$ is applied to an object by repositioning it along a circular path in the xy plane.
A. rotation.
B. scaling
C. translation
D. transformation

ANSWER: A
153. Successive scaling operations are $\qquad$ .
A. additive
B. subtractive
C. multiplicative
D. infinite

ANSWER: C
154. A rigid body change in coordinate positions is referred to as $\qquad$ transformation.
A. rigid body.
B. rigid motion.
C. rigid.
D. rigid changing

ANSWER: B
155. $\qquad$ often involve inverse matrix calculations.
A. Matrix transformation.
B. Finite transformation matrix.
C. Composite transformation.
D. Infinite transformation matrix.

ANSWER: C
156. $\qquad$ is a transformation that produces a mirror image of an object.
A. Shape.
B. Vector
C. Scalar
D. Reflection

ANSWER: D
157. When objects are to be displayed with color or shaded surfaces we apply $\qquad$ .
A. object rendering.
B. surface rendering
C. view rendering.
D. parameter rendering.

ANSWER: B
158. $\qquad$ include the intensity and positions of light sources and general background illumination required for a scene.
A. Object rendering.
B. Surface rendering
C. Viewing specifications.
D. Lighting specifications

ANSWER: D
159. In surface rendering procedures can then be applied to generate at the correct illumination and
$\qquad$ of the scene.
A. viewing specifications.
B. color
C. contrast
D. shadow regions.

ANSWER: D
160. Objects displayed with $\qquad$ , so that the intensity of lines decreases from the front to the back of the object.
A. depth cueing.
B. perpendicular projection.
C. parallel projection.
D. perspective projection.

ANSWER: A
161. $\qquad$ removes the part of the visible surfaces to show internal structure.
A. Surface rendering.
B. Cutaway view.
C. Surface identification.
D. Exploded view.

ANSWER: B
162. Three dimensional views can be obtained by $\qquad$ a raster scan image from a vibrating flexible mirror.
A. reflecting.
B. refracting
C. observing
D. deflecting

ANSWER: A
163. Stereoscopic devices present $\qquad$ views of the scene.
A. 1
B. 2
C. 3
D. 4

ANSWER: B
164. The mirror image for a two dimensional reflection is generated relative to an $\qquad$ by rotation the object 180 degrees about the reflection axis.
A. axis of refraction.
B. axis of restoration.
C. axis of reflection.
D. axis of deflection

ANSWER: C
165. The mirror image for a two dimensional reflection is generated relative to an axis of reflection by rotation the object $\qquad$ degrees about the reflection axis.
A. 90 .
B. 180
C. 270
D. 360

ANSWER: B
166. $\qquad$ transformations can be used to modify object shape.
A. Translation.
B. Reflection
C. Shear
D. Scaling

ANSWER: C
167. $\qquad$ can be assigned as shear parameter.
A. Integer.
B. Real Number.
C. Random Number.
D. Floating Point.

ANSWER: B
168. Translation, rotation, scaling, reflection are examples of $\qquad$ .
A. point plotting.
B. image transformation.
C. graphics
D. 2D transformation

ANSWER: D
169. Which table can be expanded so that vertices are cross referenced to corresponding edges?
A. Vertex table.
B. Polygon table.
C. Edge table.
D. Expanded vertex table.

ANSWER: A
170. Every vertex is the end point for at least $\qquad$ edge.
A. 1
B. 2
C. 3
D. 4

ANSWER: B
171. Each polygon has at least $\qquad$ shared edge
A. 1
B. 2
C. 3
D. 4

ANSWER: A
172. $\qquad$ can be constructed with various combination of plane and curved surfaces.
A. Objects.
B. Object boundaries.
C. Surface
D. Surface boundaries

ANSWER: B
173. Graphics package often provide routines for displaying internal components or $\qquad$ view of solid objects.
A. Cross sectional.
B. Hatch fill.
C. Cross fill.
D. Solid fill.

ANSWER: A
174. $\qquad$ rendering algorithms must be applied if a realistic rendering of the scene is required.
A. Object.
B. Surface
C. View
D. Parameter

ANSWER: B
175. The coordinate reference defines the $\qquad$ for the plane of the camera film.
A. plane and surface.
B. plane and coordinate.
C. position and interface.
D. position and orientation.

ANSWER: D
176. The easiest rotation axes to handle are those that are $\qquad$ to the coordinate.
A. parallel.
B. perpendicular
C. straight
D. opposite

ANSWER: A
177. $\qquad$ transformations can be used to modify object shape.
A. Translation.
B. Reflection
C. Shear
D. Scaling

ANSWER: C
178. The line joining the red and the violet spectral points, called as $\qquad$ line.
A. violet line.
B. red line.
C. magenta line
D. purple line.

ANSWER: D
179. Different tints are produced by adding $\qquad$ pigment to the original color.
A. red.
B. blue
C. black
D. white

ANSWER: D
180. GKS stands for $\qquad$ .
A. graphical kernel system.
B. graphics kernel system.
C. graphics kernel symbol.
D. graphics kernel systems.

ANSWER: A
181. Visual pigment red have a peak sensitivity at wavelength of about $\qquad$ nm.
A. 740 .
B. 630
C. 530
D. 450

ANSWER: B
182. The dominant frequency is also called as $\qquad$ .
A. saturation.
B. luminance
C. hue
D. brightness

ANSWER: C
183. Data glove is used to grasp $\qquad$ object.
A. binary.
B. virtual
C. existing
D. real

ANSWER: B
184. Space partitioning representation is to describe interior properties by partitioning the spatial region containing an object into a set of small, non overlapping contiguous $\qquad$ .
A. objects.
B. solids
C. triangles
D. liquid

ANSWER: B
185. $\qquad$ for a three dimensional graphics object is a set of surface polygons that enclose the object interior.
A. Surface rendering.
B. Space partitioning representations.
C. Surface identification.
D. Boundary representations.

ANSWER: D
186. A polygon mesh approximation to a curved surface can be improved by dividing the surface into smaller $\qquad$ _.
A. polygon facets.
B. octagon facets.
C. squares
D. circles

ANSWER: A
187. A way of storing $\qquad$ is to create lists namely vertex table, edge table and polygon table.
A. convergence data.
B. storage table.
C. polygon surface table.
D. geometric data.

ANSWER: D
188. The edge table contains pointers back to the $\qquad$ to identify vertices for each polygon edge.
A. vertex table.
B. polygon table.
C. edge table.
D. expanded vertex table.

ANSWER: A
189. In a $\qquad$ parallel lines in the world coordinate scene project into parallel lines on the two dimensional display plane.
A. plane projection.
B. perpendicular projection.
C. parallel projection.
D. perspective projection.

ANSWER: C
190. In $\qquad$ , parallel lines in the scene that are not parallel to the display plane are projected into converging lines.
A. plane projection.
B. perpendicular projection.
C. parallel projection
D. perspective projection.

ANSWER: B
191. $\qquad$ is applied by choosing maximum and minimum intensity values and a range of distances over which the intensities are to vary.
A. Depth cueing.
B. Perpendicular projection.
C. Parallel projection.
D. Perspective projection.

ANSWER: A
192. The side of the plane that faces the $\qquad$ is called the inside face.
A. object exterior.
B. object interior.
C. object
D. solid

ANSWER: B
193. The side of the plane that faces the $\qquad$ is called the outward face.
A. object exterior.
B. object interior.
C. object
D. solid

ANSWER: A
194. When polygons are specified with more than $\qquad$ vertices, it is possible that the vertices may not all lie in one plane.
A. 3
B. 2
C. 1
D. 0

ANSWER: B
195. $\qquad$ is the number of control points in a Beizer curves.
A. Polynomial.
B. Curve polynomial.
C. Beizer polynomial.
D. Beizer integer.

ANSWER: C
196. Natural objects can be realistically described with $\qquad$ .
A. natural geometry.
B. similarity geometry.
C. fractal geometry.
D. euclidean geometry.

ANSWER: C
197. The representation of the amount of variation in object detail is represented with $\qquad$ .
A. fractal geometry.
B. fractal dimension.
C. fractal definition.
D. fractal generation.

ANSWER: B
198. In depth cueing the lines farther are displayed with $\qquad$ .
A. increasing intensity.
B. decreasing intensity.
C. increasing color.
D. decreasing color.

ANSWER: B
199. A technique commonly used for engineering drawing is to display the non visible lines as $\qquad$ lines.
A. straight.
B. dot
C. curved
D. dashed

ANSWER: D
200. $\qquad$ describe a three dimensional object as a set of surfaces that separate the object interior from the environment.
A. Surface rendering.
B. Space partitioning representations.
C. Surface identification.
D. Boundary representations.

ANSWER: D
201. Sound pressure levels are measured in $\qquad$ .
A. decibels.
B. ounce
C. pound
D. fathom

ANSWER: A
202. MIDI stands for $\qquad$ .
A. music instruction digital interface.
B. musical instrument digital interface.
C. musical instrumental digit interface.
D. music instrument digit interface.

ANSWER: B
203. Digital audio data is the actual representation of a $\qquad$ .
A. light.
B. music
C. sound
D. noise

ANSWER: C
204. Digital audio data is also called as $\qquad$ .
A. tracks.
B. probable
C. examples
D. samples

ANSWER: D
205. In Windows, system sounds are $\qquad$ files.
A. .rar.
B. .wav.
C. 3 gp .
D. .wmv.

ANSWER: B
206. MIDI files are $\qquad$ than CD quality digital audio files.
A. larger.
B. too large
C. smaller
D. equal

ANSWER: C
207. The sampling frequencies often used in multimedia are $\qquad$ .
A. KHz .
B. MHz
C. GHz
D. DHz

ANSWER: A
208. The value of each sample is rounded off to the nearest integer known as $\qquad$ .
A. samplization.
B. quantization
C. quantification
D. digitations

ANSWER: B
209. The amount of information stored about each sample is the $\qquad$ _.
A. sample no.
B. sample volume.
C. sample size.
D. sample unit

ANSWER: C
210. LEDs operate on $\qquad$ frequencies.
A. optical.
B. infra
C. infrared
D. electro

ANSWER: C
211. Digitized sound is the $\qquad$ sound.
A. sampled.
B. covered
C. diluted
D. modified

ANSWER: A
212. Sample size are $\qquad$ bits.
A. 2
B. 4
C. 6
D. 8

ANSWER: D
213. A 16-bit sample provides a staggering $\qquad$ units.
A. 16,384 .
B. 32,786 .
C. 65,536 .
D. 84,658 .

ANSWER: C
214. Removing of dead air or blank space from a front of the recording is known as $\qquad$ .
A. trimming.
B. cutting
C. editing
D. erasing

ANSWER: A
215. MIDI sounds are typically stored in files with the $\qquad$ extensions.
A. .MDI.
B. .MID.
C. .MIDI.
D. .MDII.

ANSWER: B
216. A popular effect in which one image transforms into another is known as $\qquad$ .
A. animation.
B. encrypting
C. modifying
D. morphing

ANSWER: D
217. PAL stands for $\qquad$ .
A. pass alternative line.
B. phase alternative line.
C. pass alternate line.
D. phase alternate line.

ANSWER: D
218. HDTV stands for $\qquad$ .
A. high defined television.
B. high definition television.
C. higher definition television.
D. higher defined television.

## ANSWER: B

219. Light comes from an $\qquad$ .
A. electron.
B. cathode
C. atom
D. radium

ANSWER: C
220. VGA stands for $\qquad$ .
A. video graphics array.
B. visual graphics array.
C. video graph array.
D. visual graph array.

ANSWER: B
221. The area on a display device to which a window is mapped is called a $\qquad$ .
A. window.
B. view port
C. coordinate
D. section

ANSWER: B
222. A world coordinate area selected for display is called $\qquad$ .
A. window.
B. view port
C. view point
D. section

ANSWER: A
223. The region against which an object is to clipped is called a $\qquad$ .
A. clipping.
B. window
C. view port
D. clip window

ANSWER: D
224. The location of the point relative to the boundaries of the clipping rectangle is called $\qquad$ code.
A. location.
B. binary
C. region
D. area

ANSWER: C
225. The region code of the clipping rectangle is $\qquad$ .
A. 0000 .
B. 0001
C. 1000
D. 1111

ANSWER: A
226. A region code is a $\qquad$ digit binary code.
A. 16
B. 8
C. 4
D. 2

ANSWER: C
227. All-or none $\qquad$ strategy is used to keep all of the string inside a clip window.
A. word clipping.
B. object clipping
C. character clipping
D. string clipping

ANSWER: C
228. The picture parts to be saved are those that are outside the region is referred as $\qquad$ clipping.
A. outside.
B. exterior
C. external
D. extreme

ANSWER: B
229. $\qquad$ are used to describe interior properties by partitioning the spatial region containing an object into a set of small, non overlapping contiguous solids.
A. Surface rendering.
B. Space partitioning representation
C. Surface identifications.
D. Boundary representations.

ANSWER: B
230. $\qquad$ generally refers to any time sequence of visual changes in a scene
A. Computer animation.
B. Graphics
C. Visualization
D. Frame work

ANSWER: A
231. Analogy with two-dimensional polar co-ordinates the dimensions unit for solid angles is called the
A. steradian.
B. solid angle.
C. angle
D. co-ordinates.

ANSWER: A
232. A $\qquad$ model is a method for explaining the properties or behavior of color within some particular control.
A. single color model
B. light color
C. color
D. spectral color

ANSWER: C
233. The dominant frequency is also called as the $\qquad$ .
A. hue.
B. color
C. frequency
D. wavelength

ANSWER: A
234. The team $\qquad$ is used to refer collectively two properties describing color characteristics purity and dominant frequency.
A. white light source.
B. chromaticity
C. purity
D. saturation

ANSWER: B
235. $\qquad$ as the most commonly used boundary presentation for a 3-D graphics object
A. Data polygon
B. Surface polygon
C. System polygon
D. Area polygon

ANSWER: B
236. A three dimensional object can also be represented using
A. Method
B. Equation
C. Point
D. line

ANSWER: B
237. $\qquad$ is a simple object space algorithm that removes about half of the total polygon in an image as about half of the faces of objects are back faces
A. Wire frame model
B. Constructive solid geometry methods
C. Isometric projection
D. Back face removal

ANSWER: D
238. By which, we can take a view of an object from different directions and different distances
A. Projection
B. Rotation
C. Translation
D. Scaling

ANSWER: A
239. The projection that can be viewed as the projection that has a centre of projection at a finite distance
from the plane of projection are called
A. Parallel projection
B. Perspective projection
C. Isometric projection
D. Geometric projection

ANSWER: B
240. The surfaces that is blocked or hidden from view in a 3D scene are known as $\qquad$
A. Hidden surface
B. Frame buffer
C. Quad tree
D. Area buffer

ANSWER: A
241. $\qquad$ surface algorithm is based on perspective depth.
A. Depth comparison
B. Z-buffer or depth-buffer algorithm
C. subdivision method
D. back-face removal

ANSWER: B
242. In $\qquad$ year Z- buffer algorithm are described.
A. 1995
B. 1974
C. 1945
D. 1981

ANSWER: B
243. Z -buffer algorithm are $\qquad$ .
A. Simplest algorithm
B. Complex algorithm
C. Largest algorithm
D. Poor algorithm.

ANSWER: A
244. The painter algorithm are based on the property of $\qquad$ .
A. Polygon buffer
B. Frame buffer
C. Depth buffer
D. area buffer

ANSWER: B
245. $\qquad$ type of projection does not have the projection rays parallel to each other.
A. axonometric projection
B. oblique projection
C. orthographic projection
D. perspective projection

ANSWER: D
246. $\qquad$ are the three principal planes in orthographic projection.
A. front, top, profile
B. back, top, profile
C. top, front, right side
D. frontal, horizontal, profile

ANSWER: D
247. The painter algorithm were developed on $\qquad$
A. 1972 by Newell
B. 1972 by Evans
C. 1974 by Cat mull
D. 1976 by Evans

ANSWER: A
248. All the hidden surface algorithms employee image space approach except
A. Back face removal
B. Depth buffer method
C. Scan line method
D. Depth sort method

ANSWER: A
249. $\qquad$ are the two types of projections give a pictorial view of the object without convergence.
A. orthographic and perspective
B. oblique and axonometric
C. perspective and oblique
D. isometric and orthographic

ANSWER: B
250. The name of a visible surface detection algorithm is $\qquad$ .
A. Back face detection
B. Back face removal
C. Ray tracing
D. Area tracing ANSWER: A


[^0]:    A. viewing.
    B. finite
    C. composite
    D. infinite

    ANSWER: A

