MGU-BSc - BCS - 202 -[Computer Science]-[Complimentary - III]-Second Semester-Mathematics-II

Unit-1-Linear Algebra: Vector Spaces-MCQs

1. Addition of vectors is given by the rule
(A) $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$
(B) $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$
(C) $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+b_{2}, b_{1}+a_{2}\right)$
(D) $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}+b_{1}+b_{2}\right)$
2. If V is said to form a vector space over F for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}$ and $\alpha, \beta \in \mathrm{F}$, which of the equation is correct:
(A) $(\alpha+\beta) \mathrm{x}=\alpha \mathrm{x} . \beta \mathrm{x}$
(B) $\alpha(x+y)=\alpha x+\alpha y$
(C) $(\alpha+\beta) x=\alpha x \cup \beta x$
(D) $(\alpha+\beta) x=\alpha x \cap \beta x$
3. In any vector space $\mathrm{V}(\mathrm{F})$, which of the following results is correct?
(A) $0 . \mathrm{x}=\mathrm{x}$
(B) $\alpha .0=\alpha$
(C) $(-\alpha) x=-(\alpha x)=\alpha(-x)$
(D) None of the above
4. If $\alpha, \beta \in \mathrm{F}$ and $\mathrm{x}, \mathrm{y} \in \mathrm{W}$, a non empty subset W of a vector space $\mathrm{V}(\mathrm{F})$ is a subspace of V if -
(A) $\alpha x+\beta y \in W$
(B) $\alpha x-\beta y \in W$
(C) $\alpha x \cdot \beta y \in W$
(D) $\alpha x / \beta y \in W$
5. If $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are three subspaces of a vector space V , such that $\mathrm{M} \subseteq \mathrm{L}$ then
$(\mathrm{A}) \mathrm{L} \cap(\mathrm{M}+\mathrm{N})=(\mathrm{L} \cap \mathrm{M}) .(\mathrm{L} \cap \mathrm{N})$
(B) $L \cap(M+N)=(L+M) \cap(L+N)$
(C) $L \cap(M+N)=(L \cap M)+(L \cap N)$
(D) $\mathrm{L} \cap(\mathrm{M}+\mathrm{N})=(\mathrm{L} \cap \mathrm{M} \cap \mathrm{N})$
6. Under a homomorphism $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$, which of the following is true?
(A) $\mathrm{T}(0)=1$
(B) $T(-x)=-T(x)$
(C) $\mathrm{T}(0)=\infty$
(D) None of the above
7. If A and B are two subspaces of a vector space $V(F)$, then
(A)

$$
\frac{A+B}{A} \cong \frac{B}{A \cap B} .
$$

$$
\frac{B+A}{B} \cong \frac{A}{B \cap A}
$$

(B)
(A) $\frac{A+B}{A} \cong \frac{B}{A \cap B}$.
(C) $\mathrm{A}+\mathrm{B}=\mathrm{A} \cap \mathrm{B}$
(D) Both (A) and (B)

Ans: (A) $\frac{A+B}{A} \cong \frac{B}{A \cap B}$.
8. If $V=R^{4}(R)$ and $S=\{(2,0,0,1),(-1,0,1,0)\}$, then $L(S)$
(A) $\{(2 \alpha+\beta, 0, \beta, \alpha) \mid \alpha, \beta \in R\}$
(B) $\{(2 \alpha \beta+\beta, 0, \beta, \alpha) \mid \alpha, \beta \in \mathrm{R}\}$
(C) $\{(2 \alpha \beta-\beta, 0, \beta, \alpha) \mid \alpha, \beta \in \mathrm{R}\}$
(D) $\{(2 \alpha-\beta, 0, \beta, \alpha) \mid \alpha, \beta \in \mathrm{R}\}$
9. If V is said to form a vector space over F for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}$ and $\alpha, \beta \in \mathrm{F}$, which of the equation is correct:
(A) $(\alpha \beta) x=\alpha(\beta x)$
(B) $(\alpha+\beta) x=\alpha x \cdot \beta x$
(C) $(\alpha+\beta) x=\alpha x \cup \beta x$
(D) $(\alpha+\beta) x=\alpha x \cap \beta x$
10. If V is an inner product space, then
(A) $(0, v)=0$ for all $v \in V$
(B) $(0, v)=1$ for all $v \in V$
(C) $(0, v)=\infty$ for all $v \in V$
(D) None of the above
11. If V be an inner product space, then
(A) $\|x-y\| \leq\|x\|+\|y\|$ for all $x, y \in V$
(B) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$
(C) $\|x+y\| \geq\|x\|+\|y\|$ for all $x, y \in V$
(D) $\|x-y\| \geq\|x\|+\|y\|$ for all $x, y \in V$
12. If V be an inner product space, then
(A) $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}-\|y\|^{2}\right)$
(B) $\|x+y\|^{2}+\|x-y\|^{2}=2(\|x\|+\|y\|)^{2}$
(C) $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$
(D) $\|x+y\|^{2}+\|x-y\|^{2}=2(\|x+y\|)^{2}$
13. In Cauchy-Schwarz inequality, the absolute value of cosine of an angle is at most
(A) 1
(B) 2
(C) 3
(D) 4
14. If A and B are two subspaces of a FDVS V then, $\operatorname{dim}(A+B)$ is equal to
(A) $\operatorname{dim} \mathrm{A}+\operatorname{dim} \mathrm{B}+\operatorname{dim}(\mathrm{A} \cap \mathrm{B})$
(B) $\operatorname{dim} \mathrm{A}-\operatorname{dim} \mathrm{B}-\operatorname{dim}(\mathrm{A} \cap \mathrm{B})$
(C) $\operatorname{dim} \mathrm{A}+\operatorname{dim} \mathrm{B}-(\operatorname{dim} \mathrm{A} \cap \operatorname{dim} \mathrm{B})$
(D) $\operatorname{dim} \mathrm{A}+\operatorname{dim} \mathrm{B}-\operatorname{dim}(\mathrm{A} \cap \mathrm{B})$
15. If A and B are two subspaces of a FDVS V and $A \cap B=(0)$ then
(A) $\operatorname{dim}(\mathrm{A}+\mathrm{B})=\operatorname{dim} \mathrm{A} \cup \operatorname{dim} \mathrm{B}$
(B) $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B$
(C) $\operatorname{dim}(\mathrm{A}+\mathrm{B})=\operatorname{dim} \mathrm{A} \cap \operatorname{dim} \mathrm{B}$
(D) $\operatorname{dim}(\mathrm{A}+\mathrm{B})=\operatorname{dim}(\mathrm{A}+\mathrm{B})$
16. If V be an inner product space and $x, y \in V$ such that $x \perp y$, then
(A) $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$
(B) $\|x+y\|^{2}=\|x\|^{2}$. $\|y\|^{2}$
(C) $\|x+y\|^{2}=\|x\|^{2} \cup\|y\|^{2}$
(D) $\|x+y\|^{2}=\|x\|^{2} \cap\|y\|^{2}$
17. If V be a finite dimensional space and $\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{m}}$ be subspaces of V such that, $\mathrm{V}=\mathrm{W}_{1}+$ $\ldots+\mathrm{W}_{\mathrm{m}}$ and $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W}_{1}+\ldots+\operatorname{dim} \mathrm{W}_{\mathrm{m}}$, then
(A) $V=0$
(B) $\mathrm{V}=\operatorname{dim}_{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{m}}$
(C) $V=\infty$
(D) $\mathrm{V}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2}+\ldots+\oplus \mathrm{W}_{\mathrm{m}}$
18. If V is a finite dimensional inner product space and W is a subspace of V , then
(A) $V=W \cdot W^{\perp}$
(B) $\mathrm{V}=\mathrm{W}+\mathrm{W}^{\perp}$
(C) $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$
(D) $\mathrm{V}=\mathrm{W} \cap \mathrm{W}^{\perp}$
19. If W is a subspace of a finite dimensional inner product space V , then
(A) $\left(\mathrm{W}^{\perp}\right)^{\perp}=\mathrm{W}$
(B) $\left(\mathrm{W}^{\perp}\right)^{\perp} \neq \mathrm{W}$
(C) $\left(\mathrm{W}^{\perp}\right)^{\perp} \leq \mathrm{W}$
(D) $\left(\mathrm{W}^{\perp}\right)^{\perp} \geq \mathrm{W}$
20. If W_{1} and W_{2} be two subspaces of a vector space $V(F)$ then
(A) $\mathrm{W}_{1}+\mathrm{W}_{2}=\left\{\mathrm{w}_{1}+\mathrm{w}_{2} \mid \mathrm{w}_{1} \in \mathrm{~W}_{1}, \mathrm{w}_{2} \in \mathrm{~W}_{2}\right\}$
(B) $\mathrm{W}_{1}+\mathrm{W}_{2}=\left\{\mathrm{w}_{1} \cdot \mathrm{w}_{2} \mid \mathrm{w}_{1} \in \mathrm{~W}_{1}, \mathrm{w}_{2} \in \mathrm{~W}_{2}\right\}$
(C) $\mathrm{W}_{1}+\mathrm{W}_{2}=\left\{\mathrm{w}_{1} \cap \mathrm{w}_{2} \mid \mathrm{w}_{1} \in \mathrm{~W}_{1}, \mathrm{w}_{2} \in \mathrm{~W}_{2}\right\}$
(D) $\mathrm{W}_{1}+\mathrm{W}_{2}=\left\{\mathrm{w}_{1} \cup \mathrm{w}_{2} \mid \mathrm{w}_{1} \in \mathrm{~W}_{1}, \mathrm{w}_{2} \in \mathrm{~W}_{2}\right\}$
21. If $\{\mathrm{w} 1, \ldots, \mathrm{wm}\}$ is an orthonormal set in V , then for all $\mathrm{v} \in \mathrm{V} \sum_{i=1}$ is
(A) Greater than or equal to $\|\mathrm{v}\|^{2}$
(B) Less than or equal to $\|v\|^{2}$
(C) Greater than $\|\mathrm{v}\|^{2}$
(D) Less than $\|v\|^{2}$
22. If W is a subspace of V and $\mathrm{v} \in \mathrm{V}$ satisfies $(\mathrm{v}, \mathrm{w})+(\mathrm{w}, \mathrm{v}) \leq(\mathrm{w}, \mathrm{w})$ for all $\mathrm{w} \in \mathrm{W}$ where V is an inner product, then
(A) $(\mathrm{v}, \mathrm{w})=\infty$
(B) $(\mathrm{v}, \mathrm{w})=1$
(C) $(\mathrm{v}, \mathrm{w})=2$
(D) $(\mathrm{v}, \mathrm{w})=0$
23. If S_{1} and S_{2} are subsets of V, then:
(A) $\mathrm{L}\left(\mathrm{L}\left(\mathrm{S}_{1}\right)\right)=\mathrm{L}\left(\mathrm{S}_{1}\right)$
(B) $\mathrm{L}\left(\mathrm{L}\left(\mathrm{S}_{1}\right)\right)=\mathrm{L}\left(\mathrm{S}_{2}\right)$
(C) $\mathrm{L}\left(\mathrm{L}\left(\mathrm{S}_{1}\right)\right)=\mathrm{L}(\mathrm{V})$
(D) $\mathrm{L}\left(\mathrm{L}\left(\mathrm{S}_{1}\right)\right)=\mathrm{L}\left(\mathrm{S}_{1} \cdot \mathrm{~S}_{2}\right)$
24. If V be an inner product space and two vectors $u, v \in \mathrm{~V}$ are said to be orthogonal if
(A) $(\mathrm{u}, \mathrm{v})=1 \Leftrightarrow(\mathrm{v}, \mathrm{u})=1$
(B) $(u, v) \neq 0 \Leftrightarrow(v, u) \neq 0$
(C) $(\mathrm{u}, \mathrm{v})=0 \Leftrightarrow(\mathrm{v}, \mathrm{u})=0$
(D) $(\mathrm{u}, \mathrm{v})=\infty \Leftrightarrow(\mathrm{v}, \mathrm{u})=\infty$
25. A set $\left\{u_{i}\right\}_{i}$ of vectors in an inner product space V is said to be orthogonal if
(A) $\left(u_{i}, u_{j}\right)=0$ for $i \neq j$
(B) $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)=1$ for $\mathrm{i} \neq \mathrm{j}$
(C) $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)=\infty$ for $\mathrm{i} \neq \mathrm{j}$
(D) $\left(u_{i}, u_{j}\right)=2$ for $i \neq j$
26. If V and U be two vector spaces over the same field F where $\mathrm{x}, \mathrm{y} \in \mathrm{V} ; \alpha, \beta \in \mathrm{F}$, then a mapping $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ is called a homomorphism or a linear transformation if
(A) $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{T}(\mathrm{x}) \cdot \beta \mathrm{T}(\mathrm{y})$
(B) $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{T}(\mathrm{x})+\beta \mathrm{T}(\mathrm{y})$
(C) $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{T}(\mathrm{x})-\beta \mathrm{T}(\mathrm{y})$
(D) $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{T}(\mathrm{y})+\beta \mathrm{T}(\mathrm{x})$
27. In any vector space $\mathrm{V}(\mathrm{F})$, which of the following results is correct?
(A) $0 . x=0$
(B) $\alpha \cdot 0=0$
(C) $(\alpha-\beta) x=\alpha x-\beta x, \alpha, \beta \in F, x \in V$
(D) All of the above
28. If V is said to form a vector space over F for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}$ and $\alpha, \beta \in \mathrm{F}$, which of the equation is correct:
(A) $(\alpha+\beta) x=\alpha x+\beta x$
(B) $(\alpha+\beta) x=\alpha x . \beta x$
(C) $(\alpha+\beta) x=\alpha x \cup \beta x$
(D) $(\alpha+\beta) x=\alpha x \cap \beta x$
29. The sum of two continuous functions is \qquad .
(A) Non continuous
(B) Continuous
(C) Both continuous and non continuous
(D) None of the above
30. A non empty subset W of a vector space $\mathrm{V}(\mathrm{F})$ is said to form a subspace of \qquad if W forms a vector space under the operations of V .
(A) V
(B) F
(C) W
(D) None of the above
31. If S_{1} and S_{2} are subsets of V, then:
(A) $\mathrm{L}\left(\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right)=\mathrm{L}\left(\mathrm{S}_{1}\right)+\mathrm{L}\left(\mathrm{S}_{2}\right)$
(B) $\mathrm{L}\left(\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right)=\mathrm{L}\left(\mathrm{S}_{1}\right) \cdot \mathrm{L}\left(\mathrm{S}_{2}\right)$
(C) $L\left(S_{1} \cup S_{2}\right)=L\left(S_{1}\right) \oplus L\left(S_{2}\right)$
(D) $\mathrm{L}\left(\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right)=\mathrm{L}\left(\mathrm{S}_{1}\right) \cap \mathrm{L}\left(\mathrm{S}_{2}\right)$
32. To be a subspace for a non empty subset W of a vector space $\mathrm{V}(\mathrm{F})$, the necessary and sufficient condition is that W is closed under \qquad _.
(A) Subtraction and scalar multiplication
(B) Addition and scalar division
(C) Addition and scalar multiplication
(D) Subtraction and scalar division
33. If $\mathrm{V}=\mathrm{F}_{2}{ }^{2}$, where $\mathrm{F}_{2}=\{0,1\} \bmod 2$ and if $\mathrm{W}_{1}=\{(0,0),(1,0)\}, \mathrm{W}_{2}=\{(0,0),(0,1)\}, \mathrm{W}_{3}$ $=\{(0,0),(1,1)\}$ then $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3}$ is equal to (A) $\{(0,0),(1,0),(0,1),(1,1)\}$
(B) $\{(1,0),(1,0),(1,1),(1,1)\}$
(C) $\{(0,1),(1,1),(0,1),(1,1)\}$
(D) $\{(0,0),(1,1),(1,1),(1,0)\}$
34. If the space $V(F)=F^{2}(F)$ where F is a field and if $W_{1}=\{(a, 0) \mid a \in F\}, W_{2}=\{(0, b) \mid$ $b \in \mathrm{~F}\}$ then V is equal to
(A) $\mathrm{W}_{1}+\mathrm{W}_{2}$
(B) $\mathrm{W}_{1} \oplus \mathrm{~W}_{2}$
(C) $\mathrm{W}_{1} . \mathrm{W}_{2}$
(D) None of the above
35. If V be the vector space of all functions from $\mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{V}_{\mathrm{e}}=\{\mathrm{f} \in \mathrm{V} \mid \mathrm{f}$ is even $\}, \mathrm{V}_{\mathrm{o}}=$ $\{\mathrm{f} \in \mathrm{V} \mid \mathrm{f}$ is odd $\}$. Then V_{e} and V_{o} are subspaces of V and V is equal to
(A) $\mathrm{V}_{\mathrm{e}} \cdot \mathrm{V}_{\mathrm{o}}$
(B) $V_{e}+V_{o}$
(C) $V_{e} \cup V_{o}$
(D) $\mathrm{V}_{\mathrm{e}} \oplus \mathrm{V}_{\mathrm{o}}$
36. $\mathrm{L}(\mathrm{S})$ is the smallest subspace of V , containing \qquad .
(A) V
(B) S
(C) 0
(D) None of the above
37. If S_{1} and S_{2} are subsets of V, then
(A) $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \Rightarrow \mathrm{~L}\left(\mathrm{~S}_{1}\right) \subseteq \mathrm{L}\left(\mathrm{S}_{2}\right)$
(B) $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \Rightarrow \mathrm{~L}\left(\mathrm{~S}_{1}\right) \cap \mathrm{L}\left(\mathrm{S}_{2}\right)$
(C) $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \Rightarrow \mathrm{~L}\left(\mathrm{~S}_{1}\right) \cup \mathrm{L}\left(\mathrm{S}_{2}\right)$
(D) $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \Rightarrow \mathrm{~L}\left(\mathrm{~S}_{1}\right) \oplus \mathrm{L}\left(\mathrm{S}_{2}\right)$
38. If W is a subspace of V , then which of the following is correct?
(A) $\mathrm{L}(\mathrm{W})=\mathrm{W}$
(B) $\mathrm{L}(\mathrm{W})=\mathrm{W}^{3}$
(C) $\mathrm{L}(\mathrm{W})=\mathrm{W}^{2}$
(D) $\mathrm{L}(\mathrm{W})=\mathrm{W}^{4}$
39. If $S=\{(1,4),(0,3)\}$ be a subset of $R 2(R)$, then
$(\mathrm{A})(2,1) \in \mathrm{L}(\mathrm{S})$
(B) $(2,0) \in \mathrm{L}(\mathrm{S})$
(C) $(2,3) \in \mathrm{L}(\mathrm{S})$
$(\mathrm{D})(3,4) \in \mathrm{L}(\mathrm{S})$
40. If $\mathrm{V}=\mathrm{R} 4(\mathrm{R})$ and $\mathrm{S}=\{(2,0,0,1),(-1,0,1,0)\}$, then
(A) $\mathrm{L}(\mathrm{S})=\{(2 \alpha+\beta, 0, \beta, \alpha) \mid \alpha, \beta \in \mathrm{R}\}$
(B) $\mathrm{L}(\mathrm{S})=\{(2 \alpha \oplus \beta, 0, \beta, \alpha) \mid \alpha, \beta \in \mathrm{R}\}$
(C) $\mathrm{L}(\mathrm{S})=\{(2 \alpha \beta, 0, \beta, \alpha) \mid \alpha, \beta \in \mathrm{R}\}$
(D) $\mathrm{L}(\mathrm{S})=\{(2 \alpha-\beta, 0, \beta, \alpha) \mid \alpha, \beta \in \mathrm{R}\}$
41. In dot or scalar product of two vectors which of the following is correct?
(A) $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$
(B) $\quad \vec{v} \cdot \vec{w}=0$
(C) $\quad \vec{v} \cdot \vec{w}=1$
(D) None of the above

Ans: (A) $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$
42. If $\vec{u}, \vec{v}, \vec{w}$ are vectors and α, β real numbers, then which of the following is correct?
(A)
(B) $\vec{u} \cdot(\alpha \vec{v}+\beta \vec{w})=\alpha \beta$
(C) $\vec{u} \cdot(\alpha \vec{v}+\beta \vec{w})=1$
(D) $\vec{u} \cdot(\alpha \vec{v}+\beta \vec{w})=0$

Ans: (A) $\vec{u} \cdot(\alpha \vec{v}+\beta \vec{w})=\alpha(\vec{u} \cdot \vec{v})+\beta(\vec{u} \cdot \vec{w})$
43. If V is an inner product space, then
(A) $(\mathrm{u}, \mathrm{v})=1$ for all $\mathrm{v} \in \mathrm{V} \Rightarrow u=0$
(B) $(\mathrm{u}, \mathrm{v})=0$ for all $\mathrm{v} \in \mathrm{V} \Rightarrow u=0$
(C) $(\mathrm{u}, \mathrm{v})=\infty$ for all $\mathrm{v} \in \mathrm{V} \Rightarrow u=0$
(D) None of the above
44. If V be an inner product space and $\mathrm{v} \in \mathrm{V}$, then norm of v (or length of v) is denoted by (A) \| v \|
(B) \vec{v}
(C) lv
(D) None of the above
45. If V be an inner product space, then for all $\mathrm{u}, v \in \mathrm{~V}$
(A) $|(u, v)|=\|u\|\|v\|$
(B) $|(u, v)| \geq\|u\|\|v\|$
(C) $|(u, v)| \leq\|u\|\|v\|$
(D) $|(u, v)| \neq\|u\| \| v$ ||
46. If two vectors are L.D. then one of them is a scalar \qquad of the other.
(A) Union
(B) Subtraction
(C) Addition
(D) Multiple
47. If $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \in \mathrm{~V}(\mathrm{~F})$ such that $\mathrm{v}_{1}+\mathrm{v} 2+\mathrm{v}_{3}=0$ then which of the following is correct?
(A) $\mathrm{L}\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}\right)=\mathrm{L}\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}\right)$
(B) $\mathrm{L}\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}\right)=\mathrm{L}\left(\left\{\mathrm{v}_{2}, \mathrm{v}_{2}\right\}\right)$
(C) $\mathrm{L}\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}\right)=\mathrm{L}\left(\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}\right)$
(D) $\mathrm{L}\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}\right)=\mathrm{L}\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{1}\right\}\right)$
48. The set $S=\{(1,2,1),(2,1,0),(1,-1,2)\}$ forms a basis of
(A) $R^{3}(\mathrm{R})$
(B) $R^{2}(R)$
(C) R (R)
(D) None of the above
49. If V is a FDVS and S and T are two finite subsets of V such that S spans V and T is L.I. then
(A) $0(\mathrm{~T})=0(\mathrm{~S})$
(B) 0 (T) ≤ 0 (S)
(C) 0 (T) ≥ 0 (S)
(D) None of the above
50. If $\operatorname{dim} \mathrm{V}=\mathrm{n}$ and $\mathrm{S}=\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\}$ is L.I. subset of V then
(A) $\mathrm{V} \supseteq \mathrm{L}(\mathrm{S})$
(B) $\mathrm{V} \subseteq \mathrm{L}(\mathrm{S})$
(C) $\mathrm{V} \subset \mathrm{L}(\mathrm{S})$
(D) $\mathrm{V} \supset \mathrm{L}(\mathrm{S})$

Unit-2-Linear Transformation-MCQs

1. Which of the following equation is correct in terms of linear transformation where $\mathrm{T}: \mathrm{V}$ $\rightarrow \mathrm{W}$ and $\mathrm{x}, \mathrm{y} \in \mathrm{V}, \alpha, \beta \in \mathrm{F}$ and V and where W are vector spaces over the field F .
(A) $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{T}(\mathrm{x})+\beta \mathrm{T}(\mathrm{y})$
(B) $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\beta \mathrm{T}(\mathrm{x})+\alpha \mathrm{T}(\mathrm{y})$
(C) $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{T}(\mathrm{y})+\beta \mathrm{T}(\mathrm{x})$
(D) $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{T}(\mathrm{x}) \cdot \beta \mathrm{T}(\mathrm{y})$
2. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a L.T, then which of the following is correct
(A) Rank of $T=w(T)$
(B) Rank of $\mathrm{T}=\mathrm{v}(\mathrm{T})$
(C) Rank of $\mathrm{T}=\mathrm{r}(\mathrm{T})$
(D) None of the above
3. If $\mathrm{T}, \mathrm{T}_{1}, \mathrm{~T}_{2}$ be linear operators on V , and $\mathrm{I}: \mathrm{V} \rightarrow \mathrm{V}$ be the identity map $\mathrm{I}(\mathrm{v})=\mathrm{v}$ for all v (which is clearly a L.T.) then
(A) $\alpha\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)=\left(\alpha \mathrm{T}_{1}\right) \mathrm{T}_{2}=\mathrm{T}_{1}\left(\alpha \mathrm{~T}_{2}\right)$ where $\alpha \in \mathrm{F}$
(B) $\alpha\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)=\alpha \mathrm{T}_{2}=\alpha \mathrm{T}_{1}$ where $\alpha \in \mathrm{F}$
(C) $\alpha\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)=\alpha \mathrm{T}_{1}=\left(\alpha \mathrm{T}_{2}\right)$ where $\alpha \in \mathrm{F}$
(D) $\alpha\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)=\alpha\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\mathrm{T}_{2}\left(\alpha \mathrm{~T}_{1}\right)$ where $\alpha \in \mathrm{F}$
4. If $\mathrm{T}, \mathrm{T}_{1}, \mathrm{~T}_{2}$ be linear operators on V , and $\mathrm{I}: \mathrm{V} \rightarrow \mathrm{V}$ be the identity map $\mathrm{I}(\mathrm{v})=\mathrm{v}$ for all v (which is clearly a L.T.) then
(A) $\mathrm{T}_{1}\left(\mathrm{~T}_{2} \mathrm{~T}_{3}\right)=\left(\mathrm{T}_{1} \mathrm{~T}_{3}\right) \mathrm{T}_{2}$
(B) $\mathrm{T}_{1}\left(\mathrm{~T}_{2} \mathrm{~T}_{3}\right)=\left(\mathrm{T}_{2} \mathrm{~T}_{3}\right) \mathrm{T}_{1}$
(C) $\mathrm{T}_{1}\left(\mathrm{~T}_{2} \mathrm{~T}_{3}\right)=\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right) \mathrm{T}_{3}$
(D) $\mathrm{T}_{1}\left(\mathrm{~T}_{2} \mathrm{~T}_{3}\right)=\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)$
5. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a $\mathrm{L} . \mathrm{T}$, then which of the following is correct
(A) Nullity of $\mathrm{T}=\mathrm{w}(\mathrm{T})$
(B) Nullity of $\mathrm{T}=\mathrm{v}(\mathrm{T})$
(C) Nullity of $\mathrm{T}=\mathrm{r}(\mathrm{T})$
(D) None of the above
6. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a $\mathrm{L} . \mathrm{T}$, then which of the following is correct
(A) Rank T + Nullity T $=\operatorname{dim} \mathrm{V}$
(B) Rank T . Nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$
(C) Rank T - Nullity T $=\operatorname{dim} \mathrm{V}$
(D) Rank T / Nullity T = dim V
7. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a $\mathrm{L} . \mathrm{T}$, then which of the following is correct
(A) Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{1\}$
(B) Range $\mathrm{T} \cap \operatorname{Ker} \mathrm{T}=\{2\}$
(C) Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{3\}$
(D) Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{0\}$
8. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a L.T and if $\mathrm{T}(\mathrm{T}(\mathrm{v}))=0$, then
(A) $\mathrm{T}(\mathrm{v})=1, \mathrm{v} \in \mathrm{V}$
(B) $\mathrm{T}(\mathrm{v})=\infty, \mathrm{v} \in \mathrm{V}$
(C) $\mathrm{T}(\mathrm{v})=2, \mathrm{v} \in \mathrm{V}$
(D) $T(v)=0, v \in V$
9. If V and W be two vector spaces over the same field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{S}: \mathrm{V} \rightarrow \mathrm{W}$ be two linear transformations then
(A) $(T+S) v=T(v)+S(v), v \in V$
(B) $(T+S) v=T(v) . S(v), v \in V$
(C) $(T+S) v=T(v) \oplus S(v), v \in V$
(D) None of the above
10. If $\mathrm{V}, \mathrm{W}, \mathrm{Z}$ be three vector spaces over a field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}, \mathrm{S}: \mathrm{W} \rightarrow \mathrm{Z}$ be L.T then we can define $\mathrm{ST}: \mathrm{V} \rightarrow \mathrm{Z}$ as
(A) $(\mathrm{ST}) \mathrm{v}=((\mathrm{ST}) \mathrm{v})$
(B) $(\mathrm{ST}) \mathrm{v}=\mathrm{S}(\mathrm{T}(\mathrm{v}))$
(C) $(\mathrm{ST}) \mathrm{v}=((\mathrm{ST}) \mathrm{v})$
(D) $(\mathrm{ST}) \mathrm{v}=(\mathrm{S}(\mathrm{Tv}))$
11. If $\mathrm{T}, \mathrm{T}_{1}, \mathrm{~T}_{2}$ be linear operators on V , and $\mathrm{I}: \mathrm{V} \rightarrow \mathrm{V}$ be the identity $\operatorname{map} \mathrm{I}(\mathrm{v})=\mathrm{v}$ for all v (which is clearly a L.T.) then
(A) $\mathrm{IT}=\mathrm{T}_{1}$
(B) $\mathrm{IT}=\mathrm{T}_{2}$
(C) $\mathrm{IT}=\mathrm{V}$
(D) $\mathrm{IT}=\mathrm{T}$
12. If $\mathrm{T}, \mathrm{T}_{1}, \mathrm{~T}_{2}$ be linear operators on V , and $\mathrm{I}: \mathrm{V} \rightarrow \mathrm{V}$ be the identity map $\mathrm{I}(\mathrm{v})=\mathrm{v}$ for all v (which is clearly a L.T.) then
(A) $\mathrm{T}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\mathrm{TT}_{1}+\mathrm{TT}_{2}$
(B) $\mathrm{T}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\mathrm{T}_{1}+\mathrm{T}_{2}$
(C) $\mathrm{T}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\mathrm{T}\left(\mathrm{TT}_{1}+\mathrm{TT}_{2}\right)$
(D) $\mathrm{T}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\mathrm{TT}_{1} \mathrm{~T}_{2}$
13. If V and W be two vector spaces (over F) of $\operatorname{dim} \mathrm{m}$ and n respectively, then
(A) $\operatorname{dim} \operatorname{Hom}(V, W)=m n$
(B) $\operatorname{dim} \operatorname{Hom}(V, W)=m+n$
(C) $\operatorname{dim} \operatorname{Hom}(V, W)=m \oplus n$
(D) None of the above
14. If T, T_{1}, T_{2} be linear transformations from $V \rightarrow W, S, S_{1}, S_{2}$ from $W \rightarrow U$ and K, K_{1}, K_{2} from $\mathrm{U} \rightarrow \mathrm{Z}$ where $\mathrm{V}, \mathrm{W}, \mathrm{U}, \mathrm{Z}$ are vector spaces over a field F then
(A) $\mathrm{K}(\mathrm{ST})=\mathrm{KST}$
(B) $K(S T)=(K S) T$
(C) $K(S T)=K S$
(D) $\mathrm{K}(\mathrm{ST})=\mathrm{ST}$
15. If $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \operatorname{Hom}(\mathrm{~V}, \mathrm{~W})$ then
(A) $r\left(\alpha \mathrm{~T}_{1}\right)=r\left(\mathrm{~T}_{1}\right)$ for all $\alpha \in \mathrm{F}, \alpha \neq 0$
(B) $\mathrm{r}\left(\alpha \mathrm{T}_{1}\right)=\mathrm{r} \alpha$ for all $\alpha \in \mathrm{F}, \alpha \neq 0$
(C) $\mathrm{r}\left(\alpha \mathrm{T}_{1}\right)=\mathrm{T}_{1}$ for all $\alpha \in \mathrm{F}, \alpha \neq 0$
(D) None of the above
16. If $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \operatorname{Hom}(\mathrm{~V}, \mathrm{~W})$ and $\mathrm{r}(\mathrm{T})$ means rank of T then
(A) $\left|r\left(T_{1}\right)-r\left(T_{2}\right)\right|=r\left(T_{1}+T_{2}\right)=r\left(T_{1}\right)+r\left(T_{2}\right)$
(B) $\left|r\left(T_{1}\right)-r\left(T_{2}\right)\right| \geq r\left(T_{1}+T_{2}\right) \geq r\left(T_{1}\right)+r\left(T_{2}\right)$
(C) $\left|\mathrm{r}(\mathrm{T} 1)-\mathrm{r}\left(\mathrm{T}_{2}\right)\right| \leq \mathrm{r}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) \leq \mathrm{r}\left(\mathrm{T}_{1}\right)+\mathrm{r}\left(\mathrm{T}_{2}\right)$
(D) $\left|\mathrm{r}\left(\mathrm{T}_{1}\right)-\mathrm{r}\left(\mathrm{T}_{2}\right)\right|<\mathrm{r}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)<\mathrm{r}\left(\mathrm{T}_{1}\right)+\mathrm{r}\left(\mathrm{T}_{2}\right)$
17. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{U}$ be two linear transformations. Then
(A) (ST) ${ }^{-1}=\mathrm{T}^{-1} \mathrm{~T}^{-1}$
(B) $(\mathrm{ST})^{-1}=\mathrm{T}^{-1} \mathrm{~T}$
(C) $(\text { ST })^{-1}=T^{-1} \mathrm{~S}^{-1}$
(D) None of the above
18. T be a linear operator on V and let $\operatorname{Rank} \mathrm{T}^{2}=\operatorname{Rank} \mathrm{T}$ then
(A) Range $\mathrm{T} \cap \operatorname{Ker} \mathrm{T}=\{0\}$
(B) Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{1\}$
(C) Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{2\}$
(D) Range $\mathrm{T} \cap \operatorname{Ker} \mathrm{T}=\{3\}$
19. A L.T. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is called non-singular if
(A) Ker $\mathrm{T}=\infty$
(B) Ker $\mathrm{T}=\{0\}$
(C) $\operatorname{Ker} \mathrm{T}=\{1\}$
(D) $\operatorname{Ker} \mathrm{T}=\{2\}$
20. If T be a linear operator on R^{3}, defined by $T(x 1, x 2, x 3)=(3 x 1, x 1-x 2,2 x 1+x 2+x 3)$ and ($\mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3$) be any element of R^{3} then
(A) $\mathrm{T}^{-1}(\mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3)=0$
(B) $\mathrm{T}^{-1}(\mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3)=\infty$
(C) $\mathrm{T}^{-1}(\mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3)=1$
(D)

$$
\begin{gathered}
T^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(\frac{z_{1}}{3}, \frac{z_{1}}{3}-z_{2}, z_{3}-z_{1}+z_{2}\right) \\
T^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(\frac{z_{1}}{3}, \frac{z_{1}}{3}-z_{2}, z_{3}-z_{1}+z_{2}\right)
\end{gathered}
$$

Ans: (D)
21. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is a L.T., such that T is not onto, and that there exists some $0 \neq \mathrm{v}$ in V such that, $T(v)=0$, then
(A) Ker $\mathrm{T}=\{0\}$
(B) Ker $\mathrm{T}=\infty$
(C) $\operatorname{Ker} \mathrm{T}=\{1\}$
(D) None of the above
22. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{U}$ be two linear transformations and if ST is one-one onto then
(A) $(\mathrm{ST})^{-1}=0$
(B) $(\text { ST })^{-1}=\mathrm{T}^{-1} \mathrm{~S}^{-1}$
(C) $(\mathrm{ST})^{-1}=1$
(D) None of the above
23. If T be a linear operator on FDVS V and suppose there is a linear operator U on V such that $\mathrm{TU}=\mathrm{I}$ then
(A) $\mathrm{T}^{-1}=\mathrm{U}$
(B) $\mathrm{T}^{-1}=\mathrm{I}$
(C) $\mathrm{T}^{-1}=\mathrm{V}$
(D) None of the above
24. If V_{1} and V_{2} be vector spaces over F then $\mathrm{V}_{1} \times \mathrm{V}_{2}$ is FDVS if and only if
(A) V_{1} and V_{2} are not FDVS
(B) V_{1} is FDVS
(C) V_{2} is FDVS
(D) V_{1} and V_{2} are FDVS
25. If $\mathrm{T}, \mathrm{T}_{1}, \mathrm{~T}_{2}$ be linear transformations from $\mathrm{V} \rightarrow \mathrm{W}, \mathrm{S}, \mathrm{S}_{1}, \mathrm{~S}_{2}$ from $\mathrm{W} \rightarrow \mathrm{U}$ and $\mathrm{K}, \mathrm{K}_{1}, \mathrm{~K}_{2}$ from $\mathrm{U} \rightarrow \mathrm{Z}$ where $\mathrm{V}, \mathrm{W}, \mathrm{U}, \mathrm{Z}$ are vector spaces over a field F then
(A) $(\alpha S) T=\alpha(S+T)=S(\alpha+T)$ where $\alpha \in \mathrm{F}$
(B) $(\alpha S) T=\alpha(S T)=S(\alpha T)$ where $\alpha \in \mathrm{F}$
(C) $(\alpha$ S) $\mathrm{T}=\alpha(\mathrm{S}-\mathrm{T})=\mathrm{S}(\alpha-\mathrm{T})$ where $\alpha \in \mathrm{F}$
(D) $(\alpha \mathrm{S}) \mathrm{T}=\mathrm{ST}=\alpha \mathrm{T}$ where $\alpha \in \mathrm{F}$
26. If W_{1} and W_{2} be subspaces of V such that $\frac{V}{W_{1}}$ and $\frac{V}{W_{2}}$ are FDVS then (A) $\frac{V}{W_{1} \cap W_{2}}$ are in FDVS
(B) $\frac{V}{W_{1} \cap W_{2}}$ are not in FDVS
(C) $\mathrm{V}\left(\mathrm{W}_{1} \cap \mathrm{~W}_{2}\right)$ are in FDVS
(D) None of the above

Ans: (A) $\frac{V}{W_{1} \cap W_{2}}$ are in FDVS
27. If $U(F), V(F)$ be vector spaces of dimension n and m, respectively, then
(A) $\operatorname{Hom}(\mathrm{U}, \mathrm{V})>\mathrm{M}_{\mathrm{m} \times \mathrm{n}}(\mathrm{F})$
(B) $\operatorname{Hom}(U, V)=M_{m \times n}(F)$
(C) $\operatorname{Hom}(\mathrm{U}, \mathrm{V}) \cong \mathrm{M}_{\mathrm{m} \times \mathrm{n}}(\mathrm{F})$
(D) $\operatorname{Hom}(\mathrm{U}, \mathrm{V})<\mathrm{M}_{\mathrm{m} \times \mathrm{n}}(\mathrm{F})$
28. If $U(F), V(F)$ be vector spaces of dimension n and m, respectively, then
(A) $\operatorname{dim} \operatorname{Hom}(U, V)=m n$
(B) $\operatorname{dim} \operatorname{Hom}(U, V)>m n$
(C) $\operatorname{dim} \operatorname{Hom}(\mathrm{U}, \mathrm{V})<m n$
(D) $\operatorname{dim} \operatorname{Hom}(U, V) \cong m n$
29. If S , T be two linear transformations from $\mathrm{V}(\mathrm{F})$ into $\mathrm{V}(\mathrm{F})$ and β be an ordered basis of V , then
(A) $[\mathrm{ST}]_{\beta}=[\mathrm{S}]_{\beta}[\mathrm{T}]_{\beta}$
(B) $[\mathrm{ST}]_{\beta}=[\mathrm{S}+\mathrm{T}]_{\beta}$
(C) $[\mathrm{ST}]_{\beta}=\mathrm{ST}$
(D) None of the above
30. If $\mathrm{T}: \mathrm{V}(\mathrm{F}) \rightarrow \mathrm{V}(\mathrm{F})$ be a linear transformation and $\beta=\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}, \beta^{\prime}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be two ordered basis of V . Then \exists a non singular matrix P over F such as
(A) $[\mathrm{T}]_{\beta^{\prime}}=\mathrm{P}^{-1} \mathrm{P}$
(B) $[\mathrm{T}]_{\beta^{\prime}}=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \mathrm{P}$
(C) $[\mathrm{T}]_{\beta^{\prime}}=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta}+\mathrm{P}$
(D) $[\mathrm{T}]_{\beta^{\prime}}=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta}$
31. If T be a linear operator on C 2 defined by $\mathrm{T}(\mathrm{x} 1, \mathrm{x} 2)=(\mathrm{x} 1,0)$ and $\beta=\{\in 1=(1,0), \in 2$ $=(0,1)\}, \beta^{\prime}=\{\alpha 1=(1, \mathrm{i}), \alpha 2=(-\mathrm{i}, 2)\}$ be ordered basis for C 2 then
(A)

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & 1 \\
-i & 0
\end{array}\right]
$$

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & 2 \tag{B}\\
-i & 0
\end{array}\right]
$$

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & 0 \\
-i & 0
\end{array}\right]
$$

(C)
(D) None of the above

Ans: (C)

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & 0 \\
-i & 0
\end{array}\right]
$$

32. If T be the linear operator on $R 2$ defined by $T(x 1, x 2)=(-x 2, x 1)$ and if β is any ordered basis for R 2 and $[\mathrm{T}] \beta=\mathrm{A}$, then
(A) $\mathrm{a}_{12} \mathrm{a}_{21}>0$, where $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$
(B) $a_{12} a_{21} \neq 0$, where $A=\left(a_{i j}\right)$
(C) $\mathrm{a}_{12} \mathrm{a}_{21}<0$, where $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$
(D) $\mathrm{a}_{12} \mathrm{a}_{21}=0$, where $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$
33. Let T be a linear operator on F^{n} and A be the matrix of T in the standard ordered basis for F^{n}. W be the subspace of Fn spanned by the column vectors of A then
(A) Rank of $\mathrm{T}=\operatorname{dim} \mathrm{W}$
(B) Rank of $\mathrm{T}=\operatorname{dim} \mathrm{W}+\operatorname{dim} \mathrm{T}$
(C) Rank of $\mathrm{T}=\operatorname{dim} \mathrm{W}-\operatorname{dim} \mathrm{T}$
(D) None of the above
34. If V be the space of all polynomial functions from R into R of the form $f(x)=c_{o}+c_{1} x+$ $c_{2} x^{2}+c_{2} x^{3}$ and $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ be an ordered basis of V. If D be the differential operator on V then

$$
[D]_{\beta}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(A)
(B)
(C)
(D)

$$
[D]_{\beta}=\left[\begin{array}{llll}
0 & 1 & 3 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 2 & 0 & 0
\end{array}\right]
$$

$$
[D]_{\beta}=\left[\begin{array}{llll}
0 & 0 & 3 & 1 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 3 & 0 & 0
\end{array}\right]
$$

$$
[D]_{\beta}=\left[\begin{array}{llll}
0 & 3 & 3 & 1 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0
\end{array}\right]
$$

Ans: (A)

$$
[D]_{\beta}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

35. If T, T_{1}, T_{2} be linear transformations from $V \rightarrow W, S, S_{1}, S_{2}$ from $W \rightarrow U$ and K, K_{1}, K_{2} from $\mathrm{U} \rightarrow \mathrm{Z}$ where $\mathrm{V}, \mathrm{W}, \mathrm{U}, \mathrm{Z}$ are vector spaces over a field F then
(A) $\mathrm{S}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\left(\mathrm{ST}_{1}\right)\left(\mathrm{ST}_{2}\right)$
(B) $S\left(T_{1}+T_{2}\right)=S T_{1}$
(C) $\mathrm{S}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\mathrm{ST}_{1}-\mathrm{ST}_{2}$
(D) $\mathrm{S}\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=\mathrm{ST}_{1}+\mathrm{ST}_{2}$
36. If $\mathrm{T}, \mathrm{T}_{1}, \mathrm{~T}_{2}$ be linear transformations from $\mathrm{V} \rightarrow \mathrm{W}, \mathrm{S}, \mathrm{S}_{1}, \mathrm{~S}_{2}$ from $\mathrm{W} \rightarrow \mathrm{U}$ and $\mathrm{K}, \mathrm{K}_{1}, \mathrm{~K}_{2}$ from $\mathrm{U} \rightarrow \mathrm{Z}$ where $\mathrm{V}, \mathrm{W}, \mathrm{U}, \mathrm{Z}$ are vector spaces over a field F then (A) $\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right) \mathrm{T}=\mathrm{S}_{1} \mathrm{~S}_{2}$
(B) $\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right) \mathrm{T}=\mathrm{S}_{1} \mathrm{~T}+\mathrm{S}_{2} \mathrm{~T}$
(C) $\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right) \mathrm{T}=\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right) \mathrm{T}$
(D) $\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right) \mathrm{T}=\mathrm{S}_{1} \mathrm{~T} \cdot \mathrm{~S}_{2} \mathrm{~T}$
37. $T: R^{3} \rightarrow R^{2}, S: R^{2} \rightarrow R^{2}$ be linear transformations then
(A) ST is not invertible
(B) ST is invertible
(C) ST is zero
(D) None of the above
38. If the L.T. T: $\mathbf{R}^{7} \rightarrow \mathbf{R}^{3}$ has a four dimensional Kernel, then the range of T has dimension
(A) One
(B) Two
(C) Three
(D) Four
39. If T be a L.T. from R^{7} onto a 3-dimensional subspace of R^{5} then
(A) $\operatorname{dim} \operatorname{Ker} T=1$
(B) dim Ker $\mathrm{T}=2$
(C) $\operatorname{dim} \operatorname{Ker} \mathrm{T}=3$
(D) dim Ker $\mathrm{T}=4$
40. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{U}$ be two linear transformations. Then ST is one-one onto if
(A) S and T are one-one onto
(B) S and T is onto
(C) Both (A) and (B)
(D) None of the above
41. Let V be a two dimensional vector spacer over the field F and β be an ordered basis for V.

$$
[T]_{\beta}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

If T is a linear operator on V and
then
(A) $\mathrm{T}^{2}-(\mathrm{a}+\mathrm{b}) \mathrm{T}+(\mathrm{ad}-\mathrm{bc}) \mathrm{I}=0$
(B) $\mathrm{T}^{2}-(\mathrm{a}+\mathrm{b}) \mathrm{T}+(\mathrm{ad}-\mathrm{bc}) \mathrm{I}=1$
(C) $\mathrm{T}^{2}-(\mathrm{a}+\mathrm{b}) \mathrm{T}+(\mathrm{ad}-\mathrm{bc}) \mathrm{I}=2$
(D) $\mathrm{T}^{2}-(\mathrm{a}+\mathrm{b}) \mathrm{T}+(\mathrm{ad}-\mathrm{bc}) \mathrm{I}=3$
42. If A be $\mathrm{n} \times \mathrm{n}$ matrix over F , then A is invertible if and only if
(A) Rows of A are linearly dependent over F
(B) Columns of A are linearly dependent over F
(C) Columns of A are linearly independent over F
(D) None of the above
43. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 matrix over F , then A is invertible if and only
(A) $\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})\}$ is a basis of F
(B) $\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})\}$ is a basis of F^{2}
(C) $\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})\}$ is a basis of F^{3}
(D) None of the above
44. If $\operatorname{dim} \mathrm{V}=2$ and T be a linear operator on V . Suppose matrix of T with respect to all bases of V is same then
(A) $\mathrm{T}=\alpha \mathrm{V}$ for some $\alpha \in \mathrm{F}$
(B) $\mathrm{T}=\alpha \mathrm{T}$ for some $\alpha \in \mathrm{F}$
(C) $\mathrm{T}=\alpha \mathrm{I}$ for some $\alpha \in \mathrm{F}$
(D) None of the above
45. If T be a linear operator on C^{2} defined by $\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\mathrm{x}_{1}, 0\right)$ and $\beta=\left\{\in_{1}=(1,0), \in_{2}=\right.$ $(0,1)\}, \beta^{\prime}=\left\{\alpha 1=(1, \mathrm{i}), \alpha_{2}=(-\mathrm{i}, 2)\right\}$ be ordered basis for C^{2} then the matrix of T relative to the pair β, β^{\prime} is
(A)

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & 0 \\
-i & 0
\end{array}\right]
$$

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & 1 \\
-i & 0
\end{array}\right]
$$

(B)
(C)

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & -i \\
-i & 0
\end{array}\right]
$$

(D)

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & -i \\
-i & 2
\end{array}\right]
$$

Ans: (A)

$$
[T]_{\beta \beta^{\prime}}=\left[\begin{array}{cc}
2 & 0 \\
-i & 0
\end{array}\right]
$$

46. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{U}$ be two linear transformations. Then T is one-one if
(A) ST is one-one
(B) ST is onto
(C) Both (A) and (B)
(D) None of the above
47. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{U}$ be two linear transformations. Then S is onto if (A) ST is one-one
(B) ST is onto
(C) Both (A) and (B)
(D) None of the above
48. If T be a linear operator on R_{3}, defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}, x_{1}-x_{2}, 2 x_{1}+x_{2}+x_{3}\right)$ and if $\left(z_{1}, z_{2}, z_{3}\right)$ be any element of R3 then
(A)
(B) $T^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(\frac{z_{1}}{2}, \frac{z_{1}}{2}-z_{2}, z_{3}-z_{1}-z_{2}\right)$

$$
T^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(\frac{z_{1}}{2}, \frac{z_{1}}{2}-z_{2}, z_{3}-z_{1}+z_{2}\right)
$$

(C)

$$
T^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(\frac{z_{1}}{3}, \frac{z_{1}}{2}-z_{2}, z_{3}-z_{1}-z_{2}\right)
$$

(D)

$$
T^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(\frac{z_{1}}{3}, \frac{z_{1}}{3}-z_{2}, z_{3}-z_{1}+z_{2}\right)
$$

Ans: (D)

$$
T^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(\frac{z_{1}}{3}, \frac{z_{1}}{3}-z_{2}, z_{3}-z_{1}+z_{2}\right)
$$

49. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a L.T. where V and W are two FDVS with same dimension, then which of the following is correct?
(A) T is invertible.
(B) T is non singular
(C) T is onto
(D) All of the above
50. A L.T. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is one-one iff T is
(A) Onto
(B) Not onto
(C) Both (A) and (B)
(D) None of the above

Unit-3-Matrix-MCQs

If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 0 & 1 & 2\end{array}\right)$, then a_{33} is
(A) 3
(B) 9
(C) 2
(D) 6
2. A row matrix is one which has
(A) One row
(B) One column
(C) One row and the element of row is zero
(D) One column and the element of column is zero
3. A matrix in which the number of rows is equal to the number of columns is called a
(A) Row Matrix
(B) Column Matrix
(C) Zero Matrix
(D) Square Matrix
4. $\quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ is an example of
(A) Zero Matrix
(B) Column Matrix
(C) Scalar Matrix
(D) Diagonal Matrix
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
5. is an example of
(A) Zero Matrix
(B) Column Matrix
(C) Scalar Matrix
(D) Diagonal Matrix
6. A diagonal matrix whose diagonal elements are all equal to 1 (unity) is called
(A) Identity Matrix
(B) Diagonal Matrix
(C) Triangular Matrix
(D) None of the above
7. A diagonal matrix whose diagonal elements are equal, is called
(A) Scalar Matrix
(B) Identity Matrix
(C) Triangular Matrix
(D) Unit Matrix
8. $\quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ is an example of
(A) Identity Matrix
(B) Diagonal Matrix
(C) Triangular Matrix
(D) None of the above
9. A square matrix (aij), whose elements aij $=0$ when $\mathrm{i}<\mathrm{j}$ is called
(A) a upper triangular matrix
(B) a triangular matrix
(C) a lower triangular matrix
(D) None of the above
10. $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$ is an example of
(A) a upper triangular matrix
(B) a triangular matrix
(C) a lower triangular matrix
(D) None of the above
11. Two matrices A and B are said to be equal if
(A) A and B are of same order
(B) Corresponding elements in A and B are same
(C) Both (A) and (B)
(D) None of the above
12. Which of the following matrix are equal
(A)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
3 & 4 & 9 \\
16 & 25 & 64
\end{array}\right)\left(\begin{array}{ccc}
3 & 4 & 9 \\
16 & 25 & 64
\end{array}\right)
$$

(B)
(C)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{lll}
5 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 5
\end{array}\right)
$$

(D) All of the above

$$
\left(\begin{array}{ccc}
3 & 4 & 9 \\
16 & 25 & 64
\end{array}\right)\left(\begin{array}{ccc}
3 & 4 & 9 \\
16 & 25 & 64
\end{array}\right)
$$

Ans: (B)

$$
\begin{aligned}
& \text { 13. If } A \text { and } B \text { are two matrices such as } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right), B=\left(\begin{array}{lll}
2 & 3 & 4 \\
5 & 6 & 7
\end{array}\right) \text {, then } \mathrm{A}+\mathrm{B} \\
& \text { is } \\
& \left(\begin{array}{lll}
3 & 5 & 7 \\
9 & 11 & 13
\end{array}\right) \\
& \text { (A) }\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \\
& \text { (B) } \\
& \left(\begin{array}{lll}
2 & 3 & 4 \\
5 & 6 & 7
\end{array}\right) \\
& \text { (C) None of the above } \\
& \text { (D) N }
\end{aligned}
$$

$\left(\begin{array}{ccc}3 & 5 & 7 \\ 9 & 11 & 13\end{array}\right)$

Ans: (A)
14. If A and B be two matrices then which of the following is correct?
(A) $\mathrm{A}+\mathrm{B}=\mathrm{B}-\mathrm{A}$
(B) $\mathrm{A}+\mathrm{B}=\mathrm{AB}$
(C) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
(D) None of the above
15. If A and B be two matrices then which of the following is correct?
(A) $\mathrm{A}+(\mathrm{B}+\mathrm{C})=\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})$
(B) $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
(C) $\mathrm{A}+(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
(D) $\mathrm{A}+(\mathrm{B}+\mathrm{C})=\mathrm{A}+(\mathrm{BC}+\mathrm{CA})$
16. If $A=\left(\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right)$ and $B=\left(\begin{array}{cc}7 & 0 \\ -2 & -3\end{array}\right)$ then AB is
(A)
$\left(\begin{array}{cc}16 & 7 \\ -6 & 16\end{array}\right)$
(B) $\left(\begin{array}{cc}16 & 3 \\ -6 & -9\end{array}\right)$
(C) $\left(\begin{array}{cc}14 & 0 \\ 0 & 16\end{array}\right)$
(D) $\left(\begin{array}{cc}7 & 2 \\ 0 & 16\end{array}\right)$

Ans: (B)

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
7 & -2
\end{array}\right), \quad B=\left(\begin{array}{cc}
-1 & 5 \\
7 & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
-1 & -1 \\
2 & 0
\end{array}\right) \text { then } \mathrm{A}(\mathrm{BC}) \text { is }
$$

17. If

$$
\left(\begin{array}{cc}
-11 & -1 \\
91 & 21
\end{array}\right)
$$

(B) $\left(\begin{array}{cc}-11 & 35 \\ 91 & 21\end{array}\right)$
(C) $\left(\begin{array}{cc}-11 & 35 \\ 91 & 91\end{array}\right)$
(D) $\left(\begin{array}{cc}-11 & 35 \\ -21 & 91\end{array}\right)$

Ans: (A) $\left(\begin{array}{cc}-11 & -1 \\ 91 & 21\end{array}\right)$
18. If A and B be two matrices then which of the following is correct?
(A) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{BC}+\mathrm{AC}$
(B) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AC}+\mathrm{BC}$
(C) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
(D) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{BC}+\mathrm{AB}$
19. If A and B be two matrices then which of the following is correct?
(A) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AB}+\mathrm{BC}$
(B) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$
(C) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AB}+\mathrm{AC}$
(D) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AB}+\mathrm{AC}$
20. If A is square matrix such as $A=\left(\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right)$ the A^{2} is
(A) $\left(\begin{array}{rr}1 & 0 \\ 15 & 16\end{array}\right)$
(B) $\left(\begin{array}{rr}1 & 0 \\ 15 & 12\end{array}\right)$
(C) $\left(\begin{array}{rr}1 & 0 \\ 10 & 12\end{array}\right)$
(D) $\left(\begin{array}{rr}1 & 4 \\ 10 & 12\end{array}\right)$

Ans: (A) $\left(\begin{array}{rr}1 & 0 \\ 15 & 16\end{array}\right)$
21. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ and $\mathrm{k}=2$ then kA is
(A) $\left(\begin{array}{rrr}2 & 5 & 6 \\ 8 & 10 & 12\end{array}\right)$
(B) $\left(\begin{array}{rrr}2 & 6 & 6 \\ 8 & 10 & 12\end{array}\right)$
(C) $\left(\begin{array}{rrr}2 & 6 & 6 \\ 4 & 10 & 12\end{array}\right)$
(D) $\left(\begin{array}{rrr}2 & 4 & 6 \\ 8 & 10 & 12\end{array}\right)$

Ans: (D) $\left(\begin{array}{rrr}2 & 4 & 6 \\ 8 & 10 & 12\end{array}\right)$
22. If k is any complex number and A is matrix then
(A) $k(A+B)=k A+k B$
(B) $\mathrm{k}(\mathrm{A}+\mathrm{B})=\mathrm{A}+\mathrm{B}$
(C) $k(\mathrm{~A}+\mathrm{B})=\mathrm{kAB}$
(D) None of the above
23. If k is any complex number and A is matrix then
(A) $\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \mathrm{A}=\mathrm{A}$
(B) $\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \mathrm{A}=\mathrm{k}_{1} \mathrm{k}_{2}$
(C) $\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \mathrm{A}=\mathrm{k}_{1}\left(\mathrm{k}_{2} \mathrm{~A}\right)$
(D) $\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \mathrm{A}=\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{A}$

$$
A=\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 3 & 4 \\
4 & 5 & 6
\end{array}\right) \text { and } \mathrm{k}_{1}=\mathrm{i}, \mathrm{k}_{2}=2 \text {, then }
$$

(A) $\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{A}=\mathrm{k}_{1} \mathrm{~A} \cdot \mathrm{k}_{2} \mathrm{~A}$
(B) $\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{A}=\mathrm{k}_{1} \mathrm{~A}+\mathrm{k}_{2} \mathrm{~A}$
(C) $\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{A}=\mathrm{k}_{1} \mathrm{~A}$
(D) $\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{A}=\mathrm{k}_{2} \mathrm{~A}$

$$
A=\left(\begin{array}{lll}
0 & 2 & 3 \\
2 & 1 & 4
\end{array}\right), B=\left(\begin{array}{lll}
7 & 6 & 3 \\
1 & 4 & 5
\end{array}\right),
$$

25. If then the value of $2 \mathrm{~A}+3 \mathrm{~B}$ is

$$
\left(\begin{array}{rrr}
21 & 22 & 15 \\
7 & 14 & 23
\end{array}\right)
$$

(B) $\left(\begin{array}{rrr}21 & 18 & 15 \\ 7 & 14 & 23\end{array}\right)$
(C) $\left(\begin{array}{lll}21 & 18 & 15 \\ 21 & 14 & 23\end{array}\right)$
(D) $\left(\begin{array}{lll}21 & 23 & 15 \\ 21 & 14 & 23\end{array}\right)$
$\left(\begin{array}{rrr}21 & 22 & 15 \\ 7 & 14 & 23\end{array}\right)$
Ans: (A)
26. If $A=\left(\begin{array}{rr}1 & 2 \\ -3 & 0\end{array}\right)$ and I is unit matrix of order 2 then $\mathrm{A}^{2}+3 \mathrm{~A}+5 \mathrm{I}$ is
(A) $\left(\begin{array}{rr}-9 & 8 \\ -12 & -1\end{array}\right)$
(B) $\left(\begin{array}{rr}-9 & -1 \\ -12 & -1\end{array}\right)$
(C) $\left(\begin{array}{rr}-9 & -1 \\ -12 & -6\end{array}\right)$
$\left(\begin{array}{rr}3 & 8 \\ -12 & -1\end{array}\right)$
(D)

Ans: (D) $\left(\begin{array}{rr}3 & 8 \\ -12 & -1\end{array}\right)$
27. If $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ then AB is equal to
(A) $\left(\begin{array}{ll}0 & -i \\ 0 & -i\end{array}\right)$
$\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right)$
(B)
(C) $\left(\begin{array}{cc}i & i \\ 0 & -i\end{array}\right)$
(D) $\left(\begin{array}{ll}i & -i \\ 0 & -i\end{array}\right)$

$$
\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right)
$$

Ans: (B)
28. If $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}$ and B_{3} are row matrix such as $A_{1}=\left(\begin{array}{lll}3 & 4 & 6\end{array}\right)$), $A_{2}=\left(\begin{array}{lll}3 & 4 & 0\end{array}\right)$), A_{3}
 $+\mathrm{B}_{2}+\mathrm{B}_{3}$) is
(A) (18 243066)
(B) (24243066)
(C) (18 24346 6)
(D) $(18243018$ 6)
29. If $A=\left(\begin{array}{ll}10 & 20 \\ 30 & 40\end{array}\right)$ then 5 A is equal to
(A) $\left(\begin{array}{ll}200 & 100 \\ 150 & 200\end{array}\right)$
(B) $\left(\begin{array}{ll}200 & 100 \\ 100 & 200\end{array}\right)$
(C) $\left(\begin{array}{ll}200 & 200 \\ 100 & 200\end{array}\right)$
(D) $\left(\begin{array}{rr}50 & 100 \\ 150 & 200\end{array}\right)$

Ans: (D) $\left(\begin{array}{rr}50 & 100 \\ 150 & 200\end{array}\right)$
30. If matrix $\left.\quad \begin{array}{llll}9 & 10 & 11 & 12\end{array}\right)$ where the rows represent the three sections of the class and the first three columns represent the number of students securing 1st, 2nd, 3rd divisions respectively in that order and fourth column represents the number of students who failed in the examination. Then the number of students passed in three sections respectively are
(A) $6,18,30$
(B) $18,6,30$
(C) $30,6,18$
(D) $18,30,6$
31. If matrix $\left(\begin{array}{cccc}9 & 10 & 11 & 12\end{array}\right)$ represents the results of the examination of B. Com. Class where the rows represent the three sections of the class and the first three columns represent the number of students securing 1st, 2nd, 3rd divisions respectively in that order and fourth column represents the number of students who failed in the examination. Then the no of students failed in three sections respectively are
(A) $12,8,4$
(B) 12, 8,4
(C) $4,8,12$
(D) $8,4,12$
32. If

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right), \quad B=\left(\begin{array}{lll}
2 & 3 & 4 \\
1 & 8 & 6
\end{array}\right)_{\text {then }}(A+B)^{\prime}
$$ is

(A)

$$
\left(\begin{array}{rr}
3 & 5 \\
5 & 13 \\
7 & 12
\end{array}\right)
$$

(B) $\left(\begin{array}{rr}3 & 8 \\ 5 & 13 \\ 7 & 12\end{array}\right)$
(C)
C) $\left(\begin{array}{cc}3 & 5 \\ 5 & 13 \\ 7 & 12\end{array}\right)$
(D) $\left(\begin{array}{cc}6 & 5 \\ 5 & 13 \\ 7 & 12\end{array}\right)$

Ans: (A)
$\left(\begin{array}{rr}3 & 5 \\ 5 & 13 \\ 7 & 12\end{array}\right)$
33. If $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$ for all i and j in a square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ then it is called
(A) Symmetric Matrix
(B) Skew-Symmetric Matrix
(C) Scalar Matrix
(D) Identity Matrix
34. If $\mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}}$ for all i and j in a square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ then it is called (A) Symmetric Matrix
(B) Skew-Symmetric Matrix
(C) Scalar Matrix
(D) Identity Matrix
35. A square matrix $A=\left[a_{i j}\right]_{n \times n}$ is said to be Hermitian if
(A) $\mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}}$
(B) $a_{i j}=-\bar{a}_{j i}$
(C) $a_{i j}=\bar{a}_{j i}$
(D) $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$

Ans: (C) $a_{i j}=\bar{a}_{j i}$
36. A square matrix A is said to be orthogonal if
(A) $\mathrm{A}^{\prime} \mathrm{A}=\mathrm{I}$.
(B) $\mathrm{A}^{\prime} \mathrm{A}=1$.
(C) $\mathrm{A}^{\prime} \mathrm{A}=0$.
(D) None of the above.
37. Every square matrix can be uniquely expressed as the sum of
(A)Hermitian and Skew- Hermitian Matrices
(B) Symmetric and Hermitian Matrices
(C) Hermitian and Skew- Symmetric Matrices
(D) Symmetric and Skew- Symmetric Matrices
38. If A and B are Hermitian matrices then
(A) $\mathrm{AB}+\mathrm{BA}$ is Symmetric and $\mathrm{AB}-\mathrm{BA}$ is Skew-Hermitian matrix
(B) $A B+B A$ is Skew-Hermitian and $A B-B A$ is Hermitian matrix
(C) $\mathrm{AB}+\mathrm{BA}$ is Symmetric and $\mathrm{AB}-\mathrm{BA}$ is Skew- Symmetric matrix
(D) $A B+B A$ is Hermitian and $A B-B A$ is Skew-Hermitian matrix
39. If A is an orthogonal matrix then
(A) $|\mathrm{A}|=0$
(B) $|\mathrm{A}|= \pm 1$
(C) $|\mathrm{A}|=|\mathrm{A}|^{2}$
(D) $|\mathrm{A}|=1$
40. If $\mathrm{A}=\frac{1}{\sqrt{3}}\left(\begin{array}{cc}1 & 1-i \\ 1+i & -1\end{array}\right)$ then $\mathrm{A}^{*} \mathrm{~A}$ is
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(A)
(B)
$\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$
(C) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
(D) None of the above

Ans: (A)
41. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $A A^{\prime}$ is
(A) $\left[\begin{array}{ll}20 & 20 \\ 14 & 20\end{array}\right]$
(B) $\left[\begin{array}{cc}5 & 11 \\ 11 & 25\end{array}\right]$
(C) $\left[\begin{array}{ll}10 & 14 \\ 14 & 20\end{array}\right]$
(D) $\left[\begin{array}{ll}14 & 11 \\ 11 & 25\end{array}\right]$

Ans: (B) $\left[\begin{array}{cc}5 & 11 \\ 11 & 25\end{array}\right]$
42. If A and B are both symmetric then $A B$ is also symmetric if and only if (A) $\mathrm{AB}=(\mathrm{AB})^{\prime}$
(B) $\mathrm{AB}=A^{\prime} B^{\prime}$
(C) $\mathrm{AB}=\mathrm{BA}$
(D) $\mathrm{AB}=B^{\prime} A$

$$
A=\left[\begin{array}{lll}
1 & 2 & 6 \\
3 & 5 & 8 \\
4 & 9 & 7
\end{array}\right]_{\text {then }} \frac{1}{2}\left(A+A^{\prime}\right)
$$

$$
\begin{aligned}
& \text { (A) }\left[\begin{array}{ccc}
1 & \frac{5}{2} & 5 \\
\frac{5}{2} & 5 & \frac{17}{2} \\
5 & \frac{17}{2} & 7
\end{array}\right] \\
& \text { (B) }\left[\begin{array}{ccc}
0 & -\frac{1}{2} & 1 \\
\frac{1}{2} & 0 & -\frac{1}{2} \\
-1 & \frac{1}{2} & 0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & \frac{5}{2} & 5 \\
\frac{5}{2} & \frac{17}{2} & \frac{17}{2} \\
5 & \frac{17}{2} & 7
\end{array}\right]} \\
& \text { (C) } \\
& \text { (D) None of the above } \\
& \text { Ans: (A) }
\end{aligned}
$$

44. If

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & 2 & 1 \\
-4 & 5 & 2
\end{array}\right]
$$

then $\operatorname{Adj} A$ is
(A) $\left[\begin{array}{ccc}-1 & 12 & -8 \\ -4 & 12 & -1 \\ 8 & 3 & 2\end{array}\right]$
(B) $\left[\begin{array}{ccc}-1 & 14 & -8 \\ -4 & 19 & -1 \\ 8 & 3 & 2\end{array}\right]$
(C) $\left[\begin{array}{ccc}-1 & 19 & -8 \\ -4 & 14 & -1 \\ 8 & 3 & 2\end{array}\right]$
(D) None of the above

Ans: (C) $\left[\begin{array}{ccc}-1 & 19 & -8 \\ -4 & 14 & -1 \\ 8 & 3 & 2\end{array}\right]$
45. The inverse of the matrix $\left(\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right)$ is
(A) $\left(\begin{array}{rrr}7 & -3 & -3 \\ -1 & 0 & 0 \\ -1 & 0 & 1\end{array}\right)$
(B) $\left(\begin{array}{rrr}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$
(C) $\left(\begin{array}{lll}1 & 3 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(D) None of the above

Ans: (B)

$$
\left(\begin{array}{rrr}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

$$
A=\left(\begin{array}{ccc}
1 & -3 & 2 \\
-3 & 9 & -6 \\
2 & -6 & 4
\end{array}\right) \text { is }
$$

46. The rank of matrix
(A) 1
(B) 2
(C) 3
(D) 4
47. The sum of the squares of the eigenvalues of $\left[\begin{array}{lll}3 & 0 & 0 \\ 8 & 4 & 0 \\ 6 & 2 & 5\end{array}\right]$ is
(A) 30
(B) 17
(C) 13
(D) 50
48. If 3 and 15 are the two eigenvalues of $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ (A) 0
(B) 1
(C) 2
(D) 3
then the value of the determinant
49. If $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{D}$ where $\quad\left(\begin{array}{lll}4 & 1 & 3\end{array}\right)$ and D is a diagonal matrix whose non-zero elements are the eigenvalues of A then the matrix P is

$$
A=\left(\begin{array}{lll}
3 & 1 & 4 \\
2 & 2 & 4 \\
4 & 1 & 3
\end{array}\right)
$$

[^0]\[

\left($$
\begin{array}{rrr}
-4 & 1 & 1 \\
-4 & -6 & 1 \\
8 & 1 & 1
\end{array}
$$\right)
\]

(B)

$$
\begin{aligned}
& (\mathrm{C}) \\
& \left(\begin{array}{rrr}
-4 & -6 & 1 \\
-4 & -6 & 1 \\
8 & 1 & 1
\end{array}\right),
\end{aligned}
$$

(D) None of the above

Ans: (A)

$$
\left[\begin{array}{ccc}
2 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right]
$$

50. If matrix $\mathrm{A}=$ then A^{4} is
(A) $\left[\begin{array}{ccc}0 & 0 & -13 \\ 0 & 16 & 14 \\ -40 & 0 & 41\end{array}\right]$
(B) $:\left[\begin{array}{ccr}41 & 0 & -13 \\ 0 & 16 & 14 \\ -40 & 0 & 41\end{array}\right]$
$\left[\begin{array}{ccc}41 & 0 & -40 \\ 0 & 16 & 14 \\ -40 & 0 & 41\end{array}\right]$
(C)
$\left[\begin{array}{ccc}41 & 0 & -40 \\ 0 & 16 & 0 \\ -40 & 0 & 41\end{array}\right]$
(D)
$\left[\begin{array}{ccc}41 & 0 & -40 \\ 0 & 16 & 0 \\ -40 & 0 & 41\end{array}\right]$
Ans: (D)

Unit-4-Graph Theory-MCQs

1. A vertex with degree zero is called
(A) isolated vertex
(B) pendant vertex
(C) adjacent vertices
(D) None of the above
2. A pair of vertices that determine an edge is called
(A) isolated vertex
(B) pendant vertex
(C) adjacent vertices
(D) None of the above
3. A graph with no self loops and parallel edges is called a
(A) Multigraph
(B) Simple Graph
(C) Pseudograph
(D) None of the above
4. A graph with self loops and parallel edges is called
(A) Multigraph
(B) Simple Graph
(C) Pseudograph
(D) None of the above
5. If G be a simple graph with n vertices then

$$
E(G) \leq \frac{(n-1)}{2 n}
$$

(B) $E(G) \leq \frac{(n-1)^{2}}{2}$
(C)

$$
E(G) \leq \frac{(n-1)}{2}
$$

(D) $E(G) \leq \frac{n(n-1)}{2}$

$$
\text { Ans: (D) } E(G) \leq \frac{n(n-1)}{2}
$$

6. If G be a graph with n vertices and e edges. Then

$$
\sum_{i=1}^{n} d\left(v_{i}\right)=2 e
$$

(A)

$$
\sum_{i=1}^{n} d\left(v_{i}\right)=e
$$

(B)

$$
\sum_{i=1}^{n} d\left(v_{i}\right)=e^{2}
$$

(C)
(D) None of the above

$$
\sum_{i=1}^{n} d\left(v_{i}\right)=2 e
$$

Ans: (A)
7. The minimum degrees of G are
$(\mathrm{A}) \delta(\mathrm{G})=\min \left\{\mathrm{d}(\mathrm{v})^{3} ; \mathrm{v} \in \mathrm{V}(\mathrm{G})\right\}$
(B) $\delta(\mathrm{G})=\min \left\{\mathrm{d}(\mathrm{v})^{2} ; \mathrm{v} \in \mathrm{V}(\mathrm{G})\right\}$
(C) $\delta(\mathrm{G})=\min \{\mathrm{d}(\mathrm{v}) ; \mathrm{v} \in \mathrm{V}(\mathrm{G})\}$
(D) None of the above
8. A simple graph in which each pair of distinct vertices is joined by an edge is called
(A) Multigraph
(B) Simple Graph
(C) Pseudograph
(D) Complete Graph
9. In a graph with directed edges the in-degree of a vertex v denoted by
(A) $\mathrm{d}^{+}(\mathrm{v})$
(B) $\mathrm{d}^{-}(\mathrm{v})$
(C) $\mathrm{d}(\mathrm{v})$
(D) None of the above
10. The out-degree of the following graphs is

(A) 1
(B) 2
(C) 3
(D) 4
11. A graph $H=(V(H), E(H))$ is called a subgraph of a graph $G=(V(G), E(G))$ if
(A) $\mathrm{V}(\mathrm{H}) \supset \mathrm{V}(\mathrm{G})$
(B) $V(H) \supseteq V(G)$
(C) $\mathrm{V}(\mathrm{H}) \subset \mathrm{V}(\mathrm{G})$
(D) $\mathrm{V}(\mathrm{H}) \subseteq \mathrm{V}(\mathrm{G})$
12. If in a simple graph, its vertex set V can be partitioned into two disjoint non-empty sets V1 and V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2, then the graph is called
(A) Multigraph
(B) Subgraph
(C) Bipartite Graph
(D) Complete Bipartite Graph
13. The following graph G and H is
G:

(A) Isomorphic
(B) Non-isomorphic
(C) Complete Bipartite Graph
(D) None of the above
14. The following graph G and H is
G:

H:

(A) Isomorphic
(B) Non-isomorphic
(C) Complete Bipartite Graph
(D) None of the above
15. A vertex v in a graph , G where $\omega(\mathrm{G})$ is the component of G and component is a maximal connected subgraph of G, is said to be a cut-vertex if
(A) $\omega(\mathrm{G}-\mathrm{v})<\omega(\mathrm{G})$
(B) $\omega(\mathrm{G}-\mathrm{v})=\omega(\mathrm{G})$
(C) $\omega(\mathrm{G}-\mathrm{v}) \neq \omega(\mathrm{G})$
(D) $\omega(\mathrm{G}-\mathrm{v})>\omega(\mathrm{G})$
16. An edge e in a graph G is said to be a Cut-edge, if
(A) $(G-e)$ is disconnected
(B) $(\mathrm{G}-\mathrm{e})$ is connected
(C) $(\mathrm{G}-\mathrm{e})$ is continuous
(D) None of the above
17. The following graph contains

(A) No Cut-edge
(B) One Cut-edge
(C) Two Cut-edge
(D) Three Cut-edge
18. A directed graph is \qquad connected if there is a path from u to v and v to u , whenever u and v are vertices
(A) Strongly
(B) Weakly
(C) Unilaterally
(D) None of the above
19. A directed graph is \qquad connected if there is a path between any two vertices in the underlying undirected graph
(A) Strongly
(B) Weakly
(C) Unilaterally
(D) None of the above
20. A directed graph is said to be \qquad connected if in the two vertices u and v, there exists a directed path either from u to v or from v to u.
(A) Strongly
(B) Weakly
(C) Unilaterally
(D) None of the above
21. A subset S of the edge set of a connected graph G is called an edge cutest or cut-set of G if $G-S$ is
(A) Disconnected
(B) Connected
(C) Continuous
(D) None of the above
22. A subset u of the vertex set of G is called a vertex cut-set if $G-u$ is (A) Disconnected
(B) Connected
(C) Continuous
(D) None of the above
23. For every graph G,
(A) $K(G) \geq \lambda$ (G)
(B) $\mathrm{K}(\mathrm{G})=\lambda(\mathrm{G})$
(C) $K(G) \leq \lambda$ (G)
(D) None of the above
24. For every graph G,
(A) $K(G) \leq \delta(G)$
(B) $\mathrm{K}(\mathrm{G}) \geq \delta(\mathrm{G})$
(C) $\mathrm{K}(\mathrm{G})=\delta(\mathrm{G})$
(D) None of the above
25. The union of two simple graphs $\mathrm{G} 1=(\mathrm{V} 1, \mathrm{E} 1)$ and $\mathrm{G} 2=(\mathrm{V} 2, \mathrm{E} 2)$ is the simple graph with vertex set $\mathrm{V} 1 \cup \mathrm{~V} 2$ and edge set $\mathrm{E} 1 \cup \mathrm{E} 2$ and is denoted by
(A) G1 $\cup \mathrm{G} 2$
(B) G1 $\cap \mathrm{G} 2$
(C) $\mathrm{G} 1 \oplus \mathrm{G} 2$
(D) None of the above
26. The intersection of two simple graphs $\mathrm{G} 1=(\mathrm{V} 1, \mathrm{E} 1)$ and $\mathrm{G} 2=(\mathrm{V} 2, \mathrm{E} 2)$ is the simple graph with vertex set V1 $\cap \mathrm{V} 2$ and edge set $\mathrm{E} 1 \cap \mathrm{E} 2$ and is denoted by
(A) $\mathrm{G} 1 \cup \mathrm{G} 2$
(B) $\mathrm{G} 1 \cap \mathrm{G} 2$
(C) $\mathrm{G} 1 \oplus \mathrm{G} 2$
(D) None of the above
27. The ring sum of two graphs G1 and G2 is a graph consisting of the vertex set V1 \cup V2 and of edges that are either in G1 or in G2, but not in both and is denoted by
(A) $\mathrm{G} 1 \cup \mathrm{G} 2$
(B) $\mathrm{G} 1 \cap \mathrm{G} 2$
(C) $\mathrm{G} 1 \oplus \mathrm{G} 2$
(D) None of the above
28. The ring sum of two graphs G1 and G2 is a graph consisting of the vertex set V1 \cup V2 and of edges that are either in G1 or in G2, but not in both and Δ is the symmetric difference then
(A) $\mathrm{E} 1 \Delta \mathrm{E} 2=(\mathrm{E} 1-\mathrm{E} 2) \cap(\mathrm{E} 2-\mathrm{E} 1)$
(B) $\mathrm{E} 1 \Delta \mathrm{E} 2=(\mathrm{E} 1-\mathrm{E} 2) \cup(\mathrm{E} 2-\mathrm{E} 1)$
(C) $\mathrm{E} 1 \Delta \mathrm{E} 2=(\mathrm{E} 1-\mathrm{E} 2) \subset(\mathrm{E} 2-\mathrm{E} 1)$
(D) None of the above
29. Adjacency matrix uses \qquad
(A) Arrays
(B) Linked lists
(C) Both arrays and linked lists
(D) None of the above
30. Adjacency matrix is a
(A) Directed graphs
(B) Undirected graph
(C) Both (A) and (B)
(D) None of the above
31. In adjacency matrix, if there is an edge from vertex v_{i} to v_{j} in G, then the element $a_{i j}$ in A is marked as
(A) Zero
(B) One
(C) Two
(D) None of the above
32. For a graph with ' n ' vertices, an adjacency matrix requires \qquad elements to represent it.
(A) n^{2}
(B) n^{3}
(C) n
(D) 2 n
33. The adjacency matrix describes the relationships between the
(A) Adjacent vertices
(B) Adjacent nodes
(C) Distant nodes
(D) Distant vertices
34. An Euler tour is a tour which traverses each edge exactly \qquad
(A) Once
(B) Twice
(C) Thrice
(D) None of the above
35. A connected graph is Eulerian iff it has \qquad vertices of odd degree.
(A) One
(B) Two
(C) Three
(D) No
36. A connected graph G has an Eulerian trail iff G has exactly \qquad odd vertices
(A) One
(B) Two
(C) Three
(D) No
37. If D be a connected directed graph. D is Eulerian iff $\mathrm{d}+(\mathrm{v})=\mathrm{d}-(\mathrm{v}), \forall \mathrm{v} \in \mathrm{G}$, then G is called
(A) Balanced digraph
(B) Unbalanced digraph
(C) Eulerian Digraphs
(D) None of the above
38. If G be a n-vertex graph and if G_{1} and G_{2} are two graphs obtained from G by recursively joining pairs of non-adjacent vertices whose degree sum is atleast n. Then,
(A) $\mathrm{G}_{1} \geq \mathrm{G}_{2}$
(B) $\mathrm{G}_{1} \neq \mathrm{G}_{2}$
(C) $\mathrm{G}_{1}=\mathrm{G}_{2}$
(D) None of the above
39. If G be a graph with at least 3 vertices, then G is Hamiltonian if
(A) $C(G)=k_{n},(n \geq 3)$
(B) $\mathrm{C}(\mathrm{G}) \cong \mathrm{k}_{\mathrm{n}},(\mathrm{n} \geq 3)$
(C) $C(G) \neq \mathrm{k}_{\mathrm{n}},(\mathrm{n} \geq 3)$
(D) None of the above
40. If G be a graph with at least 3 vertices, then G is Hamiltonian for all pairs u and v of nonadjacent vertices of G iff
(A) $\mathrm{d}(\mathrm{u})+\mathrm{d}(\mathrm{v}) \geq \mathrm{n}(\mathrm{n} \geq 3)$
(B) $\mathrm{d}(\mathrm{u})+\mathrm{d}(\mathrm{v}) \leq \mathrm{n}(\mathrm{n} \geq 3)$
(C) $\mathrm{d}(\mathrm{u})+\mathrm{d}(\mathrm{v})=\mathrm{n}(\mathrm{n} \geq 3)$
(D) None of the above
41. If G is Hamiltonian then, for every non-empty proper subset S of V, then
(A) $\mathrm{w}(\mathrm{G}-\mathrm{S})=|\mathrm{S}|$
(B) $w(G-S) \geq|S|$
(C) $w(G-S) \leq|S|$
(D) None of the above
42. A simple graph is connected if there exists at least \qquad spanning tree.
(A) One
(B) Two
(C) Three
(D) Four
43. The spanning tree of a connected graph can be made using
(A) Depth-First Search (DFS)
(B) Breadth-First Search (BFS)
(C) Both (A) and (B)
(D) None of the above
44. Weight of a tree is the sum of weights of the edges in a tree and is denoted by
(A) wt
(B) $w t(T)$
(C) $\mathrm{wt}\left(\mathrm{T}^{2}\right)$
(D) None of the above
45. The optimal spanning tree can be found by
(A) Kruskal's algorithm
(B) Prim's algorithm
(C) Boruvka's algorithm
(D) All of the above
46. Weight of the optimal spanning tree of the following graph is

(A) 6
(B) 8
(C) 10
(D) 12
47. Boruvka's algorithm finds a minimum spanning tree in
(A) Weighted graph
(B) Directed graph
(C) Undirected graph
(D) None of the above
48. A vertex with degree zero is
(A) Pendent vertex
(B) Adjacent vertex
(C) Isolated vertex
(D) None of the above
49. A vertex with degree one is
(A)Pendent vertex
(B) Adjacent vertex
(C) Isolated vertex
(D) None of the above
50. In a graph, if movement from one vertex to another follows a direction, then it is (A) Directed graph
(B) Undirected graph
(C) Complete graph
(D) Pseudo graph

[^0]: $$
 \left(\begin{array}{rrr}
 -4 & 1 & 1 \\
 -4 & -6 & 1 \\
 5 & 1 & 1
 \end{array}\right)
 $$

 (A)

