Multiple Choice Questions BCA <u>III Sem</u>

Data Structure and Algorithm Analysis

1. If all c(i, j)'s and r(i, j)'s are calculated, then OBST algorithm in worst case takes one of the following time.

(a) $O(n \log n)$ (b) $O(n^3)$ (c) $O(n^2)$ (d) $O(\log n)$ (e) $O(n^4)$.

Ans : $O(n^3)$

2. For a 15-puzzle problem let the initial arrangement be the following one, then answer the questions 4 - 7 with the following arrangement.

10	13	15	7
9	1	4	14
12		8	6
11	2	5	3

What is the value of 'x' used to find the reachability of the solution?(a) 1(b) 0(c) 8(d) 10(e) 13.

Ans:1

3. The upper bound on the time complexity of the nondeterministic sorting algorithm is

(a) O(n) (b) $O(n \log n)$ (c) O(1) (d) $O(\log n)$ (e) $O(n^2)$.

Ans: O(n)

4. The worst case time complexity of the nondeterministic dynamic knapsack algorithm is

(a) $O(n \log n)$ (b) $O(\log n)$ (c) $O(n^2)$ (d) O(n) (e) O(1).

Ans :O(n)

5. Recursive algorithms are based on
(a) Divideand conquer approach (b) Top-down approach
(c) Bottom-up approach (d) Hierarchical approach
(e) Heuristic approach.

Ans :Bottom-up approach

- 6. What do you call the selected keys in the quick sort method?(a) Outer key (b)Inner Key (c) Partition key(d) **Pivot key** (e) Recombine key. Ans :
- 7. How do you determine the cost of a spanning tree?
 - (a) By the sum of the costs of the edges of the tree
 - (b) By the sum of the costs of the edges and vertices of the tree
 - (c) By the sum of the costs of the vertices of the tree
 - (d) By the sum of the costs of the edges of the graph

(e) By the sum of the costs of the edges and vertices of the graph.

Ans :By the sum of the costs of the edges of the tree

8. The time complexity of the normal quick sort, randomized quick sort algorithms in the worst case is
(a) O(n²), O(n log n)
(b) O(n²), O(n²)
(c) O(n log n), O(n²)
(d) O(n log n), O(n log n)
(e) O(n log n), O(n² log n).

Ans : $O(n^2)$, $O(n^2)$

9. Let there be an array of length 'N', and the selection sort algorithm is used to sort it, how many times a swap function is called to complete the execution?
(a) N log N times
(b) log N times
(c) N² times
(d) N-1 times
(e) N times.

Ans :N-1 times

10. The Sorting methodwhich is used for external sort is

(a) Bubble sort	(b) Quick sort	(c) Merge sort
(d) Radix sort	(e) Selection sort.	

Ans :Radix sort

Ans :Order of execution

- 12. Worst case efficiency of binary search is
 - (a) $\log_2 n + 1$
 - (b) n
 - (c) N^2
 - (d) 2ⁿ
 - (e) $\log n$.

Ans : $\log_2 n + 1$

13. For defining the best time complexity, let $f(n) = \log n$ and $g(n) = \sqrt{n}$, ______ (a) $f(n) \in \Omega(g(n))$, but $g(n) \notin \Omega(f(n))$ (b) $f(n) \notin \Omega(g(n))$, but $g(n) \in \Omega(f(n))$ (c) $f(n) \notin \Omega(g(n))$, and $g(n) \notin \Omega(f(n))$ (d) $f(n) \in \Omega(g(n))$, and $g(n) \in \Omega(f(n))$

Ans :f (n) $\notin \Omega(g(n))$, but $g(n) \in \Omega(f(n))$

14. For analyzing an algorithm, which is better computing time?

(a)O (100 Log N) (b) O (N) (c)O (2^{N}) (d) O (N logN) (e) O (N^{2}). Ans :O (100 Log N)

16. Consider the usual algorithm for determining whether a sequence of parentheses is balanced. What is the maximum number of parentheses that will appear on the stack AT ANY ONE TIME when the algorithm analyzes: (()(())(()))(a) 1 (b)2 (c)3 (d) 4

Ans :3

- 17. Breadth first search
 - (a) Scans each incident node along with its children.
 - (b) Scans all incident edges before moving to other node.
 - (c) Issame as backtracking
 - (d) Scans all the nodes in random order.

Ans :Scans all incident edges before moving to other node.

- 18. Which method of traversal does not use stack to hold nodes that are waiting to be processed?
 - (a) Dept First (b) D-search (c)Breadth first
 - (d) Back-tracking

Ans :Breadth first

19. The Knapsack problem where the objective function is to minimize the profit is

```
(a) Greedy(b) Dynamic 0 / 1(c) Back tracking(d) Branch & Bound 0/1
```

Ans :Branch & Bound 0/1

20. Choose the correct answer for the following statements:

- I. The theory of NP–completeness provides a method of obtaining a polynomial time for NPalgorithms.
- II. All NP-complete problem are NP-Hard.
- (a) I is FALSE and II is TRUE (b) I is TRUE and II is FALSE
- (c) Both are TRUE (d) Both are FALSE

Ans :I is FALSE and II is TRUE

21. The Hamiltonian cycles problem uses the following line of code to generate a next vertex, provided x[] is a global array and kth vertex is under consideration:
(a) x[k] ← (x[k] + 1) mod n (b) x[k] ← (x[k]) mod (n)
(c) x[k] ← (x[k] + 1) mod (n+1) (d) x[k] ← x[k+1] mod n

Ans $:x[k] \leftarrow (x[k] + 1) \mod (n+1)$

22. The graph colouring algorithm's time can be bounded by ______ (a) $O(mn^m)$ (b) $O(n^m)$ (c) $O(n^m, 2^n)$ (d) $O(nm^n)$.

Ans :O(nmⁿ).

23. For 0/1 KNAPSACK problem, the algorithm takes ______ amount of time for

memory table, and ______time to determine the optimal load, for N objects and W as the capacity of KNAPSACK. (a) O(N+W), O(NW) (b) $\theta(NW)$,O(N+W) (c)O(N),O(NW) (d) O(NW),O(N)

Ans :(b) θ(NW),O(N+W)

24. Sorting is not possible by using which of the following methods?(a) Insertion(b) Selection (c) Deletion (d) Exchange

Ans : Deletion

25. What is the type of the algorithm used in solving the 8 Queens problem?(a)Backtracking(b) Dynamic (c) Branch and Bound (d) DandC

Ans :Backtracking

26. The following are the statements regarding the NP problems. Chose the **right** option from the following options:

I. All NP-complete problems are not NP-hard.

- II. SomeNP-hard problems are not known to be NP-complete.
- (a) Both (I) and (II) are true
- (b) Both (I) and (II) are false
- (c) Only (I) is true
- (d) Only (II) is true

Ans :Only (II) is true

- 27. Let G be a graph with 'n' nodes and let 'm' be the chromatic number of the graph. Then the time taken by the backtracking algorithm to color it is
 - (a) O(nm)
 - (b) O(n+m)
 - (c) $O(mn^m)$
 - (d) $O(nm^n)$.

Ans :O(nmⁿ).

- 28. The time complexity of the shortest path algorithm can be bounded by
 - (a) $O(n^2)$
 - (b) $O(n^4)$
 - (c) $O(n^3)$
 - (d) O(n)
 - (e) $O(n \log n)$.

Ans :O(n³)

29. Read the following statements carefully and pick the **correct** option:

I. The worst time complexity of the Floyd's algorithm is $O(n^3)$. II.

The worst time complexity of the Warshall's algorithm is $O(n^3)$.

- (a) (I) is false but (II) is true
- (b) (I) is true but (II) is false
- (c) Both (I) and (II) are true
- (d) (I) is true and (II) is not true always

(e) Both (I) and (II) are false.

Ans :Both (I) and (II) are true

- 30. Theasymptotic notation for defining the average time complexity is
 - (a) Equivalence
 - (b) Symmetric
 - (c) Reflexive
 - (e) Both (c) and (d) above.

Ans :Equivalence

- 31. For the bubble sort algorithm, what is the time complexity of the best/worst case? (assume that the computation stops as soon as no more swaps in one pass)
 - (a) best case: O(n) worst case: $O(n^*n)$
 - (b) best case: O(n) worst case: $O(n*\log(n))$
 - (c) best case: $O(n*\log(n))$ worst case: $O(n*\log(n))$
 - (d) best case: O(n*log(n)) worst case: O(n*n)

Ans : best case: O(n) worst case: $O(n^*n)$

- 32. For the quick sort algorithm, what is the time complexity of the best/worst case?
 - (a) best case: O(n) worst case: O(n*n)
 - (b) best case: O(n) worst case: $O(n*\log(n))$
 - (c) best case: $O(n*\log(n))$ worst case: $O(n*\log(n))$
 - (d) best case: O(n*log(n)) worst case: O(n*n)

Ans :best case: *O*(n*log(n)) worst case: *O*(n*n)

- 33. In an arbitrary tree (not a search tree) of order M. Its size is N, and its height is K. The computation time needed to find a data item on T is
 - (a) $O(\overline{K^*K})$
 - (b) *O*(M*M)
 - (c) *O*(N)
 - (d) *O*(K)

Ans : *O*(N)

- 34. Which of the following belongs to the algorithm paradigm?
 - (a) Minimum & Maximum problem
 - (b) Knapsack problem
 - (c) Selection problem
 - (d) Merge sort
 - (e) Quick sort.

Ans : Knapsack problem

- 35. If f,t: $N \rightarrow R^+$, then t (n) $\in \Omega$ (f (n)), iff f(n) $\in O$ (t (n)) is known as
 - (a) Limit rule
 - (b) Rule of inference
 - (c) Duality rule
 - (d) Rule of consequences

- 36. The time taken by NP-class sorting algorithm is
 - (a) O(1)
 - (b) $O(\log n)$
 - (c) $O(n^2)$
 - (d) O(n)

Ans :O(n)

37. Find the odd one out from the following categories of algorithms.

- (a) TVSP
- (b) N-Queens
- (c) 15-Puzzle
- (d) Bin-Packing.

Ans : Bin-Packing.

- 38. The time complexity of binary search in best, worst cases for an array of size N is
 - (a) N, N^2
 - (b) 1, Log N
 - (c) $\log N$, N^2
 - (d) 1, N log N

Ans : 1, Log N

- 39. Which of following algorithm scans the list by swapping the entries whenever pair of adjacent keys are out of desired order?
 - (a) Insertion sort
 - (b) Quick sort
 - (c) Shell sort
 - (d) Bubble sort

Ans : Bubble sort

- 40. The mathematical definition for Omega can be defined as, provided f,g:N \rightarrow R⁺ and c is a positive constant and n > n₀,
 - (a) $f(n) \ge c. g(n) n$
 - (b) f(n) = c. g(n) n
 - (c) $f(n) \ge c + g(n) n$
 - (d) f(n) = c + g(n) n

Ans : $f(n) \ge c. g(n) n$

- 41. The θ notation is
 - (a) Symmetric
 - (b) Reflexive
 - (c) Transitive
 - (d) (a), (b) and (c) above.

Ans : (a), (b) and (c) above.

42 From the following choose the one which belongs to the algorithm paradigm other than . to which others from the following belongs to.

- (a) Minimum & Maximum problem
- (b) Knapsack problem
- (c) Selection problem
- (d) Merge sort

Ans : Knapsack problem

43 Pick the **correct** statement(s) from the following set of statements.

I. In the Kruskal's algorithm, for the construction of minimal spanning tree for a graph, the selected edges always form a forest.

- II. In Prim's algorithm, for the construction of minimal spanning tree for a graph, the selected edges always form an orchard.
- III. DFS, BFS algorithms always make use of a queue, and stack respectively.
- (a) Only (I) above
- (b) Only (II) above
- (c) Only (III) above
- (d) Both (I) and (III) above

Ans : Only (I) above

44. Identify the name of the sorting in which time is not proportional to n^2 .

- (a) Selection sort
- (b) Bubble sort
- (c) Qucik sort
- (d) Insertion sort.

Ans : Insertion sort

- 45. The optimal solution to a problem is a combination of optimal solutions to its subproblems. This is known as
 - (a) Principleof Duality
 - (b) Principle of Feasibility
 - (c) Principle of Optimality
 - (d) Principle of Dynamicity.

Ans : Principle of Optimality

- 46. Which of the following versions of merge sort algorithm does uses space efficiently?
 - (a) Contiguous version
 - (b) Array version
 - (c) Linked version
 - (d) Structure version
 - (e) Heap version.

Ans : Linked version

- 47. Identify the correct problem for multistage graph from the list given below.
 - (a) Resource allocation problem
 - (b) Traveling salesperson problem
 - (c) Producer consumer problem
 - (d) Barber's problem

Ans : Resource allocation problem

- 48. How many edges are there in a Hamiltonian cycle if the edge cost is 'c' and the cost of cycle is 'cn'
 - (a)c (b) cn (c)n (d) 2c

Ans :n.

- 49. A problem L is NP-complete iff L is NP-hard and
 - (a) $L \approx NP$
 - (b) $L \alpha NP$
 - (c) $L \varepsilon NP$
 - (d) L = NP

Ans : $L \epsilon NP$

- 50. What would be the cost value for any answering node of a sub tree with root 'r' using branch-bound algorithm?
 - (a) Maximum
 - (b) Minimum
 - (c) Optimal
 - (d) Average

Ans: Minimum

- 51. Name the node which has been generated but none of its children nodes have been generated in state space tree of backtracking method.
 - (a) Dead node
 - (b) Live node
 - (c) E-Node
 - (d) State Node

Ans: Livenode

- 52. How many nodes are there in a full state space tree with n = 6?
 - (a) 65
 - (b) 64
 - (c) 63
 - (d) 32

Ans : 63

- 53. This algorithm scans the list by swapping the entries whenever pair of adjacent keys are out of desired order.
 - (a) Insertion sort.
 - (b) Bubble sort.
 - (c) Shell sort.
 - (d) Quick sort.

Ans: Bubble sort.

- 54. The θ notation is
 - (a) Symmetric
 - (b) Reflexive
 - (c) Transitive
 - (d) B & C only

Ans: Transitive

- 55. From the following chose the one which belongs to the algorithm paradigm other than to which others from the following belongs to.
 - (a) Minimum & Maximum problem.
 - (b) Knapsack problem.
 - (c) Selection problem.
 - (d) Merge sort.

Ans: Knapsack problem.

- 56. To calculatec(i, j)'s, w(i, j)'s and r(i, j)'s; the OBST algorithm in worst case takes the following time.
 - (a) $O(\log n)$
 - (b) O (n⁴)
 - (c) $O(n^3)$
 - (d) $O(n \log n)$

Ans: $O(n^3)$

- 57. What is the type of the algorithm used in solving the 4 Queens problem?
 - (a) Greedy
 - (b) Dynamic
 - (c) Branch and Bound
 - (d) Backtracking.

Ans: Backtracking.

- 58.In Knapsack problem, the best strategy to get the optimal solution, where Pi, Wi is the Profit, Weight associated with each of the Xith object respectively is to
 - (a) Arrange the values Pi/Wi in ascending order
 - (b) Arrange the values P_i/X_i in ascending order
 - (c) Arrange the values Pi/Wi in descending order
 - (d) Arrange the values Pi/Xi in descending order

Ans: Arrange the values Pi/Xi in descending order

59.Greedy job scheduling with deadlines algorithms' complexity is defined as

- (a) O(N)
- (b) $\Omega(n \log n)$
- (c) $O(n^2 \log n)$
- (d) O ($n \log n$)

Ans: O(N)

60.The divide and conquer merge sort algorithm's time complexity can be defined as

- (a) θ (long n)
- (b) θ (n)
- (c) $\Omega(n \log n)$
- (d) θ (n log n)

Ans: θ (n log n)

- 61. In analysis of algorithm, approximate relationship between the size of the job and the amount of work required to do it is expressed by using
 - (a) Order of magnitude or Big O
 - (b) Central tendency
 - (c) Differential equation
 - (d) Polynomial equation

Ans: Order of magnitude or Big - O

62.Worst case efficiency of binary search is

- (a) $\log_2 n + 1$
- (b) n
- (c) N²
- (d) 2ⁿ

Ans: $\log_2 n + 1$

63.Worst case efficiency of which search is O(n)?

- (a) Sequential search
- (b) Binary search
- (c) Indexed search
- (d) Hashing

Ans: Sequential search

- 64. Breadth first search
 - (a) Scans all incident edges before moving to other vertex
 - (b) Scans adjacentunvisited vertex as soon as possible
 - (c) Is same as backtracking
 - (d) Computes a path between two vertices of graph or equivalently

Ans: Scans all incident edges before moving to other vertex

- 65. Which of the following searching methods requires that all keys must reside in internal memory?
 - (a) Binary search
 - (b) Sequential search
 - (c) Hashing
 - (d) Depth first search

Ans: Binary search

66. Which of the following formulas in Omega notation best represent the expression

 $n^2+35n+6?$ (a) Ω (n^3)(b) Ω (n^2)(c) Ω (n)(d) Ω (35)Ans: Ω (n^2)

67. What term is used to describe an O(n) algorithm?

(a) Constant	(b) Non Polynomial Deterministic
(c) Logarithmic	(d) Linear.

Ans: Linear.

68. Express the formula $(n - 2)^*(n - 4)$ using θ notation:

(a) θ (n²) (b) θ (8) (c) θ (log n) (d) θ (n) Ans: θ (n²)

- 69. Read the following statements carefully and pick the right most option.
 - I. A linear algorithm to solve a problem must perform faster than a quadratic algorithm to solve the same problem.
 - II. An algorithm with worst case time behavior of 3n takes at least 30 operations for every input of size n=10.
 - (a) Both (I) and (II) are TRUE
 - (b) Both (I) and (II) are FALSE
 - (c) (I) is TRUE but (II) is FALSE
 - (e) (I) is FALSE and (II) is TRUE.

Ans: (I) is TRUE but (II) is FALSE

70. Which of the following are essential statement types for describing algorithms?

(a) Sequence (b) Selection (c) Repetition (d) All the above

Ans: All the above

- 71. When we say an algorithm has a time complexity of O (n), what does it mean?
 - (a) The algorithm has 'n' nested loops
 - (b) The computation time taken by the algorithm is proportional to n
 - (c) The algorithm is 'n' times slower than a standard algorithm
 - (d) There are 'n' number of statements in the algorithm

Ans: The computation time taken by the algorithm is proportional to n

- 72. Can we read a data item at any location of a list within a constant time (i.e. O(1))?
 - (a) Yes
 - (b) Yes, only if the list is implemented by pointers (i.e. linked-list)
 - (c) Yes, only if the list is implemented by an array
 - (d) No, we need O(n) computation steps no matter what kind of implementation is used

Ans: Yes, only if the list is implemented by an array

- 73. Sequential search has a time complexity of O(n), and binary search has a time complexity of O(log(n)). What difference will it make when the size n is 1000?(a) You would not notice much difference because computers run very fast anyway
 - (b) As n is 1000, binary search is twice as fast as sequential search
 - (c) As n is 1000, binary search is 10 times as fast as sequential search
 - (d) As n is 1000, binary search is 100 times as fast as sequential search.

Ans: As n is 1000, binary search is 100 times as fast as sequential search.

74. Readthe following statements carefully, and choose the correct answer.

- I. The Ω notation is Anti Symmetric.
- II. The big Oh notation is Semi Equivalence.
- (a) (I) is FALSE but (II) is TRUE (b) Both (I), (II) are TRUE
- (c) (I) is TRUE but(II) is FALSE (d) Both (I), (II) are FALSE

Ans: Both (I), (II) are TRUE

75. Find the odd one out.

(a) Merge Sort (b)TVSP Problem (c) KnapSack Problem(d) OBST Problem

Ans:Merge Sort

76. How many minimum number of spanning trees, one can have from a given connected graph with N nodes is having different weights for the edges.

(a)N-1 (b) One (c) $1/(N+1) 2N_{CN}$ (d) $2N_{CN}$

Ans: one

- 77. The mathematical definition for Omega can be defined as, provided f,g:N \rightarrow R+ and c is a positive constant and n > no,
 - (a) $f(n) \ge c. g(n) n$
 - (b) $f(n) \pm c. g(n) n$
 - (c) $f(n) \ge c + g(n) n$
 - (d) $f(n) \pm c + g(n) n$
 - (e) $f(n) \pm g(n) n$.

Ans: $f(n) \ge c. g(n) n$

- 78. The OBST algorithm in worst case takes ______ time if all c(i, j)'s and r(i, j)'s are calculated.
 (a) O(log n) (b) O(n4) (c) O(n3) (d) O(n log n)
 Ans: O(n3)
- 79. The θ notation is _____
 - I. Symmetric.
 - II. Reflexive.
 - III. Transitive.
 - (a) Only (I) above
 - (b) Only (II) above
 - (c) Only (III) above
 - (d) All (I), (II) and (III) above.

Ans:All (I),(II) and (III) above.

- 80. Breadth first search uses ______ as an auxiliary structure to hold nodes for future processing.
 - (a) Stack (b) Linked list (c) Graph (d) Queue.

Ans : Queue

- 81. From the following pick the one which does not belongs to the same paradigm to which others belongs to.
 - (a) Minimum & Maximum problem
 - (b) Knapsack problem
 - (c) Selection problem
 - (d) Merge sort

Ans:Knapsack problem

82. Primsalgorithm is based on _____ method

- a. Divide and conquer method
- b. Greedy method

- c. Dynamic programming
- d. Branch and bound

Ans. Greedy Method

83.	The amount of memory needs to run to completion is known as				
a.	Space complexity	с.	Worst case		
b.	Time complexity	d.	Best case		
Ans:	Space complexity				
84.	The amount of time needs to run to con	pletion is	s known as		
a.	Space complexity	с.	Worst case		
b.	Time complexity	d.	Best case		
Ans:	Time complexity				
85.	is the minimum number	of steps t	hat can executed for the given		
	parameters				
a.	Average case	с.	Worst case		
b.	Time complexity	d.	Best case		
Ans:	Best case				
86.	is the maximum number of steps that can executed for the given				
	parameters				
a.	Average case	c.	Worst case		
b.	Time complexity	d.	Best case		
Ans:	Worst case				
87.	is the average number of	f steps tha	at can executed for the given		
	parameters				
a.	Average case	c.	Worst case		
b.	Time complexity	d.	Best case		
Ans:	Average Case				
88.	Testing of a program consists of 2 phase	es which a	are		
	and				
a.	Average case & Worst case	b. Ti	me complexity & Space complexity		
c.	Validation and checking errors	d.	Debugging and profiling		
Ans:	Debugging and profiling				
89.	Worst case time complexity of binary se	arch is			
a.	O(n)	b.	O(logn)		

c.	$\Theta(nlogn)$	d.	θ(logn)		
Ans:	Ans: θ(logn)				
90.	D. Best case time complexity of binary search is				
a.	O(n)	c.	θ(nlogn)		
b.	O(logn)	d.	θ(logn)		
Ans:	θ(logn)				
91.	Average case time complexity of binary searc	h is _			
a.	O(n)	c.	θ(nlogn)		
b.	O(logn)	d.	θ(logn)		
Ans:	$\Theta(\log n)$				
92.	Merge sort invented by				
a.	CARHOARE	c.	HAMILTON		
b.	JOHN VON NEUMANN	d.	STRASSEN		
Ans	: JOHN VON NEUMANN				
93.	Quick sort invented by				
a.	CARHOARE	c.	HAMILTON		
b.	JOHN VON NEUMANN	d.	STRASSEN		
Ans	: CARHOARE				
94.	Worst case time complexity of Quick sort is _				
a.	O(n ² log7)	c.	O(nlogn)		
b.	O(n ²)	d.	O(logn)		
Ans	: O(n ²)				
95.	Best case time complexity of Quick sort is				
a.	O(n²logn)	c.	O(nlogn)		
b.	O(logn)	d.	O(logn ²)		
Ans	: O(nlogn)				
96.	Average case time complexity of Quick sort is	5			
a.	θ (nlogn)	b.			

97.	Which design strategy stops the execution when it find the solution otherwise starts
	the problem from top

a.	Back tracking	c.	Divide and conquer
b.	Branch and Bound	d.	Dynamic programming
Ans	: Back Tracking		
98.	Graphical representation of algorithm is		
a.	Pseudo-code	c.	Graph Coloring
b.	Flow Chart	d.	Dynamic programming
Ans	: Flow Chart		
99.	In pseudo-code conventions input express a	S	
a.	input	c.	Read
b.	Write	d.	Return
Ans	: Write		
100	. In pseudo-code conventions output express	as	
a.	input	c.	Read
b.	Write	d.	Return
Ans	: Read		

101. Performance based criteria of algorithm , which has to do with its computing time is

a.	Time Complexity	c.	Input
b.	Space Complexity	d.	Finiteness
Ans	: Time Complexity		

102. Performance based criteria of algorithm , which has to do with its storage requirements is _____

a. Time Complexity c. Input

b.	Space Complexity	d.	Finiteness
----	------------------	----	------------

Ans	:Space Complexity		
103.	O(1) means computing time is		
a.	Constant	с.	Quadratic
b.	Linear	d.	Cubic
Ans	: Constant		
104.	O(n) means computing time is		
a.	Constant	с.	Quadratic
b.	Linear	d.	Cubic
Ans	: Linear		
105.	O(n ²) means computing time is		
a.	Constant	с.	Quadratic
b.	Linear	d.	Cubic
Ans	: Quadratic		
106.	O(n ³) means computing time is		
a.	Exponential	с.	Quadratic
b.	Linear	d.	Cubic
Ans	:Cubic		
107.	O(2 ⁿ) means computing time is		
a.	Constant	с.	Quadratic
b.	Linear	d.	Exponential
Ans	: Exponential		
108.	Application of quicksort	_	
a.	Graphic card	c.	Data Processing
b.	Tape sorting	d.	Card Sorting
Ans	: Graphic card		
109.	Application of mergesort		
a.	Graphic card	b.	Networking

```
Card Sorting
                                                  d.
                                                        Data Processing
c.
Ans : Data Processing
110. The method will choosing when sub problems share sub problems
a.
     Divideand conquer
                                                  c.
                                                        Greedy method
b.
     Dynamic programming
                                                  d.
                                                        Back tracking
Ans : Dynamic programming
111. Time complexity of given algorithm
Algorithm Display (A)
{
     For I:=0 to n-1
     {
            For J:=0 to n-1
            {
                   Write A;
            }
     }
}
     2n^2 + 4n + 4
                                                       2n^2+n
a.
                                                   c.
                                                        2n<sup>2</sup>-1
     2n^2 + 4n + 2
                                                   d.
b.
Ans: 2n^2 + 4n + 2
112. The sorting, which works very well for small file is
                                                        Selection sort
     Count sort
a.
                                                   c.
b.
     Merge sort
                                                   d.
                                                        Quick sort
Ans: Selection sort
113. Merge sort is _
                     _.
     Externalsorting
                                                        Insertion sorting
a.
                                                   c.
     Internal sorting
                                                   d.
                                                        Exponential sorting
b.
Ans : External sorting
```

114. ______ is a step-by-step procedure for calculations

a.	Program	c.	Algorithm
b.	Greedy Method	d.	Problem
Ans	: Algorithm		
115.	Advantage of finding maximum and miniminity instead of using conditional operators is		
a.	Reduce Space complexity	c.	Get accurate value
b.	Reduce Time complexity	d.	Simple calculations
Ans	:Reduce Time complexity		
116.	Given two non-negative functions $f(n) = 5n^2$ bound value ,C	+6n+	⊦1 and g(n)=n ² . Calculate upper
a.	C=5	c.	C=12
b.	C=6	d.	C=11
Ans	: C=12		
117.	Given two non-negative functions f(n)= 6n ² - value ,C	+5n+:	1 and $g(n)=n^2$. Calculate lower bound
a.	C=5	c.	C=12
b.	C=6	d.	C=11
Ans	: C=6		
118.	The functions f &g are non-negative function	ons. T	The function f(n)=O(g(n)) if and only
	if there exist positive constants c& n_0 such t	hat _	for all $n, n \ge n_0$
a.	$f(n) \leq C^*g(n)$	c.	$f(n) = C^*g(n)$
b.	$f(n) \ge C^*g(n)$	d.	$f(n) != C^*g(n)$
Ans	$f(n) \leq C^*g(n)$		
119.	The functions f & g are non-negative function	ons. T	The function f(n)=Ω(g(n)) if and only
	if there exist positive constants $c\& n_0$ such t	hat _	for all n, n≥ n₀
a.	$f(n) \le C^*g(n)$	c.	$f(n) = C^*g(n)$
b.	$f(n) \ge C^*g(n)$	d.	$f(n) != C^*g(n)$
Ans	$f(n) \ge C^*g(n)$		

120	. The functions f & g are no			
	if there exist positive cons	stants c1,c2 & no s	such that	_for all n, n≥ n₀
a.	$C_2^*g(n) \le f(n) \le C_1^*g(n)$	C	$c. C_2^*g(n) \ge f(n) = C_1$	*g(n)
b.	$C_2^*g(n)!=f(n)=C_1^*g(n)$	Ċ	$l. C_2^*g(n) \le f(n) = C_1$	*g(n)
Ans	$s:C_2*g(n) \le f(n) \le C_1*g(n)$			
121	. Tight bound is denoted as	S		
a.	Ω	с. Ө		
b.	Ω	d. O		
Ans	s : Θ			
122	. Upper bound is denoted a	as		
a.	Ω	с. Ө		
b.	ω	d. O		
Ans	s:0			
123	. lower bound is denoted a	S		
a.	Ω	с. Ө		
b.	ω	d. O		
Ans	σ:Ω			
124	. The function $f(n)=o(g(n))$) if and only if Li	mit $f(n)/g(n)=on->0$	x
a.	Little oh	b. Little omega	a	
b.	Big oh	d. Omega		
Ans	s : Little oh			
125	. The function f(n)=o(g(n))	if and only if Lir	nit $g(n)/f(n)=0$ n->0	x
a.	Little oh	b. Little omega	1	
b.	Big oh	d. Omega		
Ans	s : Little omega			

126. Thegeneralcriteria of algorithm; zero or more quantities are externally supplied is

a.	Output	b. Finiteness
b.	Effectiveness	d. Input
Ans	: Input	
127.	The general criteria of algo	orithm; at least one quantity is produced
a.	Output	b. Finiteness
b.	Effectiveness	d. Input
Ans	: Output	
128.	The general criteria of algo	orithm; Each instruction is clear and unambiguous
a.	Output	b. Definiteness
b.	Effectiveness	d. Input
Ans	: Definiteness	
129.		gorithm; algorithm must terminates after a finite number
	of steps	
a.	Output	b. Finiteness
b.	Effectiveness	d. Input
Ans	: Finiteness	
130.	Which is not a criteria of a	lgorithm
a.	Input	b. Output
b.	Time complexity	d. Best case
Ans	: Best case	
131.	Which is not in general cri	teria of algorithm
a.	Input	b. Output
b.	Time complexity	d. Effectiveness
Ans	: Time complexity	

```
132. Time complexity of given algorithm
Algorithm Display(A)
{
     S:=0.0;
     For i:=0 to n-1
     {
            S:=S+A[i];
            Return S;
     }
}
                                                    c. 4n<sup>2</sup>+4
a.
     4n+4
     2n^2 + 2n + 2
b.
                                                    d.
                                                         4n+4
Ans: 4n+4
133. Time complexity of given algorithm
AlgorithmSum(A,S)
{
     for i:=1 to n-1
     {
            for j:=2 to n-1
            {
                   S:=S+i+j;
                   return S;
            }
     }
}
     6n<sup>2</sup>-14n+4
                                                         4n^2+6n+12
a.
                                                    c.
     6n^2 + 14n + 10
                                                         6n<sup>2</sup>-14n+10
b.
                                                    d.
Ans :6n<sup>2</sup>-14n+10
134. kruskal algorithm is based on _____
                                          method
     Divide and conquer method
                                                         Greedy method
                                                    b.
a.
```

Ans. Greedy method

135. Prims algorithm is based on _____ method

a. Divide and conquer method

b. Greedy method

Ans. Greedy Method

136. The output of Kruskal and Prims algorithm is ____

23

10

- a. Maximum spanning tree
- b. Minimum spanning tree
- Ans. Minimum spanning tree

- c. Spanning tree
- d. None of these

h

c.

d.

137. Cost of minimum spanning tree , from the following diagram is _____

12

Ì٦

е

17

- b. 39 d. 47
- Ans. 40

138. which is not feasible solution in the case of job sequence problem

item :	1	2	3	4			
profit	:	100	10	15	27		
deadline :	2	1	2	1			
a. (1,4)						c.	(4,3)
b. (2,4)						b.	(1,2)
Ans. (2,4)							

d. Branch and bound

Dynamic programming

Branch and bound

139.	which	isoptii	nal val	ue in tl	he case	of job	sequ	ience	problem
item	l :	1	2	3	4	5			
prof	it	:	20	15	10	5	1		
dead	lline :	2	2	3	3	3			
a.	(1,3,4)						c.	(4,2,3)
b.	(1,2,4)						d.	(1,5,2)
Ans.	(1,2,4)							
140.	which	is opti	mal val	lue in t	he case	e of job	seq	uence	problem
item	:	1	2	3	4	5	6	7	
prof	it	:	3	5	20	18	1	6	30
dead	lline :	1	3	4	3	2	1	2	
a.	(1,5,6	,4)						c.	(7,6,4,3)
b.	(2,3,1	,7)						b.	(1,2,3,4)
	(7,6,4								
141.	which	is opti	mal val	ue in t	he case	e of frac	ction	al kna	apsack problem, capacity of
	knaps	ack is 2	20						
item	1:	1	2	3					
prof	it	:	25	24	15				
weig	sht :	18	15	10					
a.	498							c.	480
b.	499							d.	485
Ans.	498								
142. which is optimal value in the case of fractional knapsack problem, capacity of									
	knaps	ack is 1	10						
item	:	1	2	3	4	5			
prof	it	:	12	32	40	30	50		
weig	sht :	4	8	2	6	1			
	345							c.	094
a.	545								384
b.	354 354							d.	384 350

143. 4 -Queen problem what is the space complexity

144. In the case of Fibnocci heap the running time of Prim's algorithm is _____

- a. O(E log V)
- b. O(V log E)
- c. O(log V)
- d. O(E log E)
 - Ans. O(E log V)

145. Time complexity of 4-queen problem

 $\begin{array}{ccc} a. & O(|V|) \\ b. & O(|E|) \\ c. & O(|V|+|E|) \\ d. & O(|V^2|) \\ Ans.O(|V|+|E|) \end{array}$

146. If the graph is represented as an adjacency matrix then the time complexity

- of Kruskal's algorithm is _____
- a. $O(E \log V)$
- b. O(VlogE)
- c. O(V²)
- d. O(logE)
 - Ans. O(E log V)

147. BFS is best compared to DFS in the case of ______

- a. The graph's width is large
- b. The graph's depth is large
- c. The graph consists of many nodes
- d. The graph is complex Ans. The graph's depth is large

148. The timecomplexity of Strassen's algorithm is _____

- a. O(E log V)
- b. $O(V^2)$
- c. $O(n^{\log 7})$
- d. $O(\log n^7)$ Ans. $O(n^{\log 7})$
- 149. By Strassen's equation what is wrong in the following equation

a.	p1=(a+d)(e+h)	c.	c.p3=(a-c)(e+f)
b.	b.p2=(-e+g)d	d.	d.p4=(a+b)h
	Ans. p2=(-e+g)d		

150. By Strassen's equation what is wrong in the following equation

```
a. p1=(a+d)(e+h) c. c.p3=(a-c)(e+f)
```

b.	b.p7=(-e+g)d	d.	d.p4=(a-b)h		
	Ans. p4=(a-b)h		-		
151.	The advantage of selecting maxmin algo	orithr	n using divide and conquer		
	method compared to staightmaxmin algorit	hm is	8		
a.	Less time complexity	c.	High accuracy		
b.	Less space complexity	d.	High time complexity		
Ans	. Less time complexity				
152.	The number of comparisons of elements for	best	case is in the case		
	of maxmin algorithm based on divide and c	onqu	er method		
a.	3n/2	c.	n/4		
b.	n/2	d.	n-1		
ans	3n/2				
153.	The number of comparisons of elements for	aver	age case is in the		
	case of maxmin algorithm based on divide a	and co	onquer method		
a.	3n/2	c.	n/4		
b.	n/2	d.	n-1		
ans	3n/2				
154.	The number of comparisons of elements for	wors	t case is in the case		
	of maxmin algorithm based on divide and c	onqu	er method		
a.	3n/2	c.	n/4		
b.	n/2	d.	n-1		
ans	3n/2				
155.	The method which stops the execution ,if it	find t	the solution. Otherwise it start from		
	the top				
a.	Branch and bound	c.	Dynamic programming		
b.	Back tracking	d.	Divide and conquer		
Ans	. Back tracking				
		_			
156.	156. Which is not return optimal solution from the following methods				

a. Dynamic programming c. Backtracking

b. Branch and bound d. Greedy method

Ans. Backtracking

157. In the case of sub problems share sub problems ,which method is suitable

- greedy method a. c.
- dynamic programming b.

branch and bound d. divide and conquer

ans. Dynamic programming

158. The method which return different solutions from a single point ,which is

- greedy method a.
 - b. dynamic programming

d. divide and conquer

ans. Greedy method

159. ByQuicksortalgorithm from where is first partition done in the following array

							1			
2		8	7	1	3	5	6	5	4	
0							0	0		
a.	5						c.	3		
b.	4						d.	1		
Ans.	3									
160	Ri-	nnaekine	gproblem	ic the or	nlightion	v of				
			sproblem	i is the af	pheation				 	
a.	Kr	napsack					c.	Brai	nch and b	oound
b.	Ba	ick track	ing				d.	Dynamic programming		
Ans.	Kr	napsack								
161. job sequencing with deadline is based onmethod										
		eedy met					c.		nch and b	
b.	dy	namic p	rogramm	ing			d.	divi	de and co	onquer
ans.	Gr	eedy met	thod							
		·								
160	fre	ationall	znancaalz	ic based	on			meth	od	
102.			knapsack	is pased	011					
a.	gr	eedy met	thod				c.	brar	nch and b	ound

branch and bound c.

dynamic programming d. divide and conquer b. ans. Greedy method 163. 0/1 knapsack is based on _____ method greedy method branch and bound c. a. b. dynamic programming d. divide and conquer ans. Dynamic programming 164. The files x1,x2,x3 are 3 files of length 30,20,10 records each. What is the optimal merge pattern value? 60 a. 110 c. d. b. 90 50 Ans. 90 165. The optimal merge pattern is based on _____ method Greedy method Dynamic programming b. a. Knapsack method Branch and bound d. c. Ans. Greedy method 166. Who invented the word Algorithm a. Abu Ja'far Mohammed ibn Musa c. Abu Mohammed Khan b. Abu Jafar Mohammed Kasim d. Abu Ja'far Mohammed Ali Khan Ans. Abu Ja'far Mohammed ibn Musa 167. In Algorithm comments begin with_____ c. / a. /* d. // b. */ Ans : // 168. The ______ of an algorithm is the amount of memory it needs to run to completion. a. Space Complexity c. Best Case b. Time Complexity d. Worst Case Ans : Space Complexity

169.	is the process of executing a correct program on data sets and						
	measuring the time and space it takes too	ompute	the results.				
a.	Debugging	c.	Combining				
b.	Profiling	d.	Conqure				
An	s : Profiling						
170.	In Algorithm Specification the blockes are	indicat	ted with matching				
a.]	Braces	c.	Square Brackets				
b.	Parenthesis	d.	Slashes				
An	as : Braces						
171.	Huffmancodes are the applications of path length obtained by an optimal set.		with minimal weighted external				
a. B	ST	b. N	IST				
c. Bi	inary tree	d. Weighted Graph					
A	ns : Binary tree						
172.	From the following which is not return opt	imal so	olution				
a. D	ynamic programming	c. Backtracking					
b. B	ranch and bound	d. G	reedy method				
Ans	. Backtracking						
173.	is an algorithm design	metho	l that can be used when the solution				
	to a problem can be viewed as the result of	f a sequ	ience of decisions				
a. I	Dynamic programming	c. Backtracking					
b. I	Branch and bound	d. (Greedy method				
Ans	s : Dynamic programming						
174.	The name backtrack was first coined by						
a. I	D.H.Lehmer	c. L.Baumert					
b. I	R.J.Walker	d.	S. Golomb				
An	s : D.H.Lehmer						

175. The term ______ refers to all state space search methods in which all hildren of

the -nodes are generated before any other live node can become the E-node.

a. Backtacking

c. Depth First Search

d. Breadth First Search

b. Branch and Bound

Ans; Branch and Bound

176. A ______ is a round trip path along n edges of G that visits every vertex once and returns to its starting position.

a. MSTb. Multistage Graphc. TSPd. Hamiltonian Cycle

Ans :Hamiltonian Cycle

177. Graph Coloring is which type of algorithm design strategy				
a. Backtacking	c. Greedy			
b. Branch and Bound	d. Dynamic programming			

Ans : Backtracking

178. Which of the following is not a limitation of binary search algorithm?

a. must use a sorted array

b. requirement of sorted array is expensive when a lot of insertion and deletions are needed

- c. there must be a mechanism to access middle element directly
- d. binary search algorithm is not efficient when the data elements are more than 1000.

Ans : binary search algorithm is not efficient when the data elements are more than 1000.

179. Binary Search Algorithm cannot be applied to				
a. Sorted linked list	c. Sorted linear array			
b. Sorted binary tree	d. Pointer array			
Ans :Sorted linked list				

180. Two main measures for the efficiency of an algorithm are

- a. Processor and memory c. Time and space
- b. Complexity and capacity d
- Ans : Time and Space

d. Data and space

181. The time factor when determining the efficiency of algorithm is measured by

- a. Counting microseconds
- c. Counting the number of statements d. Counting the kilobytes of algorithm

b. Counting the number of key operations

Ans : Counting the number of key operations

182. The space factor when determining the efficiency of algorithm is measured by

- a. Counting the maximum memory needed by the algorithm
- b. Counting the minimum memory needed by the algorithm
- c. Counting the average memory needed by the algorithm
- d. Counting the maximum disk space needed by the

algorithm Ans: Counting the maximum memory needed by the algorithm

183. Which of the following case does not exist in complexity theory

a. Best case	c. Average case
b. Worst case	d. Null case
Ans : Null Case	

184. The Worst case occur in linear search algorithm when

a. Item is somewhere in the middle of the array
b. Item is not in the array at all
c. Item is the last element in the array or is not there at all

Ans : Item is the last element in the array or is not there at all

185. The Average case occur in linear search algorithm

a. When Item is somewhere in the c. When Item is the last element in the array

b. When Item is not in the array at all d. When Item is the last element in the

array or is not there at all

Ans:When Item is somewhere in the middle of the array

186. The complexity of the average case of an algorithm isa. Much more complicated to analyze c. Sometimes more complicated and

than that of worst case	some other times simpler than that of
b. Much more simpler to analyze than worst of the tof worst ease	
that of worst case Ans: Much more complicated to analyze than tha	d. None or above
Ans. Much more complicated to analyze than tha	it of worst case
187. The complexity of linear search algorithm is	
a. O(n)	c. O(n2)
b. O(log n) Ans : O(n)	d. O(n log n)
188. The complexity of Binary search algorithm is	3
a. O(n)	c. O(n2)
b. O(logn)	d. O(n log n)
Ans: O(log n)	
189. The complexity of Bubble sort algorithm is	
a. O(n)	c. O(n ²)
b. O(log n)	d. $O(n \log n)$
Ans : $O(n^2)$	
190. The complexity of merge sort algorithm is	
a. O(n)	c. O(n2)
b. O(log n)	d. $O(n \log n)$
Ans : $O(n \log n)$	
191. Which of thefollowing sorting algorithm is of	f divide-and-conquer type?
a. Bubble sort	c. Quick sort
b. Insertion sort	d. All of above
Ans : Quick Sort	
192. An algorithm that calls itself directly or indi	rectly is known as
a. Sub algorithm	c. Polish notation
b. Recursion	d. Traversal algorithm
Ans : Recursion	

193. The running time of quick sort dep	ends heavily on the selection of			
a. No of inputs	c. Size o elements			
b. Arrangement of elements in array	d. Pivot element			
Ans : Pivot Element 194. In stable sorting algorithm				
a. One array is used	c. More then one arrays are required.			
b. In which duplicating elements are	d. Duplicating elements remain in			
not handled.	same relative position after sorting.			
Ans:Duplicating elements remain in same relative position after sorting.				
195. Which sorting algorithn is faster :				
a. O(n^2)	c. O(n+k)			
b. O(nlogn)	d. O(n^3)			
Ans :O(n+k)				
196. In Quick sort algorithm,constants h	nidden in T(n lg n) are			
a. Large	c. Not known			
b. Medium	d. Small			
Ans : Small				
197. Quick sort is based on divide and	conquer paradigm; we divide the problem on base			
of pivotelementand:				
a. There is explicit combine process as well to conquer the solution.				
b. No work is needed to combine the s	sub-arrays, the array is already sorted			
c. Merging the subarrays				

d. None of above.

Ans:There is explicit combine process as well to conquer the solution.

198. Dijkstra's algorithm :

- a. Has greedy approach to find all shortest paths
- b. Has both greedy and Dynamic approach to find all shortest paths
- c. Has greedy approach to compute single source shortest paths to all other vertices
- d. Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

Ans: Has greedy approach to compute single source shortest paths to all other vertices

- 199. What algorithm technique is used in the implementation of Kruskal'ssolution for theMST?
 - a. Greedy Technique
 - b. Divide-and-ConquerTechnique
 - c. Dynamic Programming Technique
 - d. The algorithm combines more than one of the above techniques

Ans:Greedy Technique

200. Which is true statement in the following?

- a. Kruskal'salgorithm is multiple source technique for finding MST.
- b. Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is O(EV)
- c. Both of above
- d. Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges)

Ans:Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges)